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The if-then construct in declarative programming is a transformation that takes a Boolean condition
ϕ and some operation P , and returns the operation that consists of first determining whether ϕ is true, and
if so applying P , and otherwise doing nothing. Quantum mechanically, Boolean propositions correspond to
subspaces Π of a system’s Hilbert space, and operations correspond to unitary operators U , and we may
ask what the quantum analogue of the if-then construct is. Any operation E worthy of being called a
conditional of the form if Π : U ought to satisfy

E : |ψ⟩ 7→ U |ψ⟩ if |ψ⟩ ∈ Π (1)

E : |ψ⟩ 7→ |ψ⟩ if |ψ⟩ ∈ Π⊥ (2)

It is clear that we may simply perform the projective measurement that distinguishes a subspace Π from
its orthogonal complement, and then perform a unitary operation U in the event that the (classical) mea-
surement outcome is True. But we know that there are more fully quantum options as well. For example,
if the Boolean condition is that a control qubit be in the state |1⟩, and U acts on a disjoint set of qubits,
then the familiar controlled-U operation satisfies the axioms of a conditional operation. More generally, if
Π is invariant under the action of U , the unitary operation UΠ+ I −Π (abusing notation so that Π denotes
both a subspace and the corresponding projector) satisfies the conditions above, as does the non-unitary
channel with Kraus operators UΠ and I −Π, which is just the classical measurement and feedback channel.
One might wonder whether there is anything “more quantum” than this classical measurement and feedback
channel in the event that Π is not invariant under U . The answer turns out to be no.

Claim 1. Let Π ⊆ H be a subspace and U a unitary operator. Suppose that E is a quantum if Π : U
channel. If Π is not invariant under U , then E must be the channel that performs a projective measurement
of the subspace Π and then applies U if the outcome is True and does nothing if the outcome is False.

Proof. As it is a quantum channel, E may be implemented by first applying an isometry V : H → H⊗Haux

and then tracing out the auxiliary system. For any |ψ⟩ ∈ Π, we must have

V |ψ⟩ = U |ψ⟩ ⊗ |χ(ψ)⟩ , (3)

and in fact the auxiliary state |χ(ψ)⟩ cannot depend on ψ at all, as otherwise V would generate entanglement
with the auxiliary system. Thus there is some |χΠ⟩ such that for any |ψ⟩ ∈ Π,

V |ψ⟩ = U |ψ⟩ ⊗ |χΠ⟩ . (4)

similarly, there is some |χΠ⊥⟩ such that for any |ϕ⟩ ∈ Π⊥ we have

V |ϕ⟩ = |ϕ⟩ ⊗ |χΠ⊥⟩ . (5)

Suppose that U does not preserve the subspace Π. Then there are states |ψ⟩ ∈ Π and |ϕ⟩ ∈ Π⊥ such that

⟨ϕ|U |ψ⟩ ̸= 0. (6)

Because V is an isometry, we require 〈
ϕ
∣∣V †V

∣∣ψ〉 = 0. (7)
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We may also write 〈
ϕ
∣∣V †V

∣∣ψ〉 = (⟨ϕ| ⊗ ⟨χΠ⊥ |) (U |ψ⟩ ⊗ |χΠ⟩) = ⟨ϕ|U |ψ⟩ ⟨χΠ⊥ |χΠ⟩ . (8)

Therefore, we have

⟨χΠ⊥ |χΠ⟩ = 0. (9)

Thus E is equivalent to measuring Π and applying U or identity conditioned on the classical outcome.

An interpretation of this is that whereas when Π and U commute, a valid conditional exists that does
not result in information leakage to the environment, when they do not, the final state of the auxiliary
system increases in entropy by exactly the classical entropy of the initial system state with respect to the
measurement Π.
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