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Abstract

The subtheory of quantum computation known as stabilizer computation is reviewed along with a strategy
for efficient classical simulation of stabilizer protocols. Magic state distillation, a method for the implemen-
tation of fault-tolerant universal quantum computation using fault-tolerant stabilizer protocols and access to
imperfectly prepared non-stabilizer states, is also reviewed and discussed from the point of view of resource
theories. Some new details about the geometric and combinatorial nature of the stabilizer polytope are
presented, and a new magic monotone is defined.
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1 Introduction

An arbitrary (pure) quantum state may be fully specified by listing coefficients of the elements of some basis
for the Hilbert space in which it lives. It is often stated that quantum mechanics is exponential. The meaning
of this claim is that when multiple systems are considered together, the cardinality of the bases of the Hilbert
space describing the joint system grows as the product of the cardinalities of the bases of the Hilbert spaces
corresponding to the individual systems. Therefore, the number of coefficients to be specified also grows
in this way. If we consider, for example, a systems of n qubits, which individually have Hilbert spaces of
dimension two (and therefore are described completely by two complex coefficients), we must list 2n complex
coefficients to specify the n-qubit state. Despite the exponential scaling of the description of arbitrary pure
states, there is a subset of pure states, the simultaneous +1 eigenvalues of an Abelian subgroup of the Pauli
group, that are efficiently (polynomially) representable [5,11]. These are known as stabilizer states, and the
set of convex combinations of such states as the stabilizer polytope. In Sec. 2 we review these states and
their efficient representation. We also present original results on the geometric and combinatorial nature of
the polytope.

It is generally believed that quantum computation is more powerful than classical computation. If this is
indeed the case, then there can be no efficient classical simulation of arbitrary quantum protocols. However,
there is a subset of protocols, generated by single-qubit phase, Hadamard, and controlled-NOT gates, as
well as conditioning based on classical randomness and measurement outcomes, that is efficiently simulable.
These are known as stabilizer computations [11]. Combined with the efficient representation of stabilizer
states, this gives an efficiently simulable and representable subtheory of quantum computation, stabilizer
computation. This is of equal power to classical compuation, and this fact is the subject of the Gottesman-
Knill theorem. We review a constructive method of demonstrating this eqivalence.

In addition to the conceptual interest of examining stabilizer computation, there is also a practical moti-
vation. Stabilizer operations may be realized fault-tolerantly due to the possibility of designing transversal
gates to perform the elementary operations [6, 13]. These are implementations of gates on encoded qubits
that have the property of causing at most a single error in the output register when faced with a single
error in the input register. Unfortunately, the π/8 gate, addition of which extends stabilizer computation to
universal quantum computation, can not be implemented transversally in schemes that allow transversal im-
plementations of the other gates [14,18]. This means that some other way to perform the gate fault-tolerantly
must be devised. One such method is the use of resource states known as magic states. These states may not
be immediately prepared fault-tolerantly, but arbitrarily good approximations may be distilled from large
numbers of imperfectly prepared states. This is known as magic state distillation [2]. We review one of the
original distillation protocols, and present a new magic monotone, a function that tells us about the amount
of resource associated with a state.

At present, there are few existing magic monotones. Of those that do exist, one, the relative entropy
of magic [3], is intuitively defined in terms of the distance of a quantum state from the stabilizer polytope,
but has no known analytical form, and is numerically intractable to estimate for systems much larger than
a single qubit. Another, the mana [3], is easy to calculate, but is not defined for qubits. It is our hope that
the characterization of the n-qubit stabilizer polytope begun in this essay will suggest new monotones that
are both explicitly computable and defined on n-qubit states.

2 The Stabilizer Formalism

In this section, we introduce the Pauli operators, which form a basis for the Hermitian operators and are
important objects of study in quantum information. We will show that they provide a real geometric
representation of quantum state space. The Clifford group, the group of unitary permutations of the Pauli
operators, is introduced. Stabilizer subspaces, those subspaces of Hilbert space that are invariant under
Abelian subgroups of the Paulis, are discussed, and geometric and combinatoric analysis of the stabilizer
polytope, the convex hull of the stabilizer states (one-dimensional stabilizer subspaces), is presented.
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2.1 Pauli Operators

The mathematics of multi-qubit systems is described in terms of the algebra of the Pauli operators X, Y , and
Z. These are pairwise anticommuting and square to identity. A faithful Hermitian operator representation
of this algebra in the eigenbasis of the Z operator is:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 -1

)
. (1)

The n-qubit Pauli group Pn is the group under matrix multiplication whose elements are tensor products of
n single-qubit Pauli matrices with phases ±i,±1.

Pn = {±(i){I,X, Y, Z}⊗n} (2)

It will often be convenient to discuss the Pauli operators without reference to their phases. For this purpose,
we may consider the Tableau representation [11].

Definition 1. The Tableau representation of the single-qubit Pauli operators is the following mapping
P 7→ rP :

P ±(i)I ±(i)X ±(i)Z ±(i)Y
rP (0 0) (1 0) (0 1) (1 1)

(3)

with group operation bitwise modulo two addition. Let rP1 = a ⊕ b and rP2 = c ⊕ d (where ⊕ is the
direct sum, i.e. vector concatenation) be the binary vectors representing n1- and n2-qubit Pauli operators,
respectively, with a and b n1-dimensional and c and d n2-dimensional. Then rP1⊗P2

= a⊕ c⊕ b⊕ d. We will
often denote the vector representations of n-qubit Pauli operators as

rP =
(
r

(X)
P r

(Z)
P

)
(4)

with r
(X)
P and r

(Z)
P n-dimensional binary vectors.

The group of Tableau vectors is Abelian, and is a projective representation of Pn and a faithful repre-
sentation of Pn/Z4. The Tableau representation provides a simple way of checking whether or not two Pauli
operators commute. Define the symplectic inner product on the binary (row) vector space of dimension 2n
as:

〈u, v〉 = u

(
0 1n

1n 0

)
vT (5)

where arithmetic is performed modulo two. Two Pauli operators P1 and P2 commute if and only if
〈rP1

, rP2
〉 = 0.

2.2 Representing Density Operators

The n-qubit Pauli operators with phase +1 form a basis for the set of Hermitian matrices of size 2n. To see
this, note first that the Pauli operators are orthogonal with respect to the Hilbert-Schmidt inner product:

(Pi, Pj)HS = Tr
[
P †i Pj

]
= 2nδij . (6)

There are 4n such operators Pi, and all are Hermitian. Hermitian matrices of size 2n have 4n real parameters,
so the Paulis form a basis. We may therefore represent any Hermitian operator ρ on n qubits as

ρ =

4n∑
i=1

riPi, ri =
1

2n
Tr [Piρ] (7)
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where the ri are real. If ρ is a density operator, the trace is the expectation of the observable Pi, so for all
Pi,

−2−n ≤ ri ≤ 2−n. (8)

with the upper bound saturated for Pi = 1. Because the coefficient of the identity is fixed, a density operator
is specified completely by the coefficients of the 4n−1 other Pauli operators. We denote the vector containing
the unnormalized coefficients as ~rρ, so that ~ri = 2nri. It will be referred to as the generalized Bloch vector.
This vector is an element of the solid unit hypercube. For one qubit, the set of valid generalized Bloch
vectors is the unit ball in three dimensions, which is the well-loved Bloch sphere. Positivity imposes more
complicated constraints in higher dimensions.

2.3 The Clifford Group

When faced with a set, a popular pastime is considering permutations of its elements. Because the Pauli
operators may be used as a basis for density operators, a reasonable question to ask is: “Which permutations
of the elements of Pn yield unitary quantum maps?”. The answer is “members of the Clifford group”. The
Clifford group on n qubits is the unitary normalizer of the n-qubit Pauli group. To specify a member of
the Clifford group, it is enough to specify how it acts on the single-qubit X and Z operators. In addition,
any assignment of images of these operators that preserves commutation relations defines a valid element
of the Clifford group. For a good discussion of the construction and properties of the Clifford group, see
Ref. [16]. An important feature of the Clifford group is that all Clifford operations may be implemented
using a polynomial number of controlled-NOT, Hadamard, and phase gates [6]. These gates form an almost-
universal gateset, in that the addition of a single gate (often the π/8 gate) extends their reach to universal
quantum computation.

2.4 Stabilizer Subspaces and States

Subgroups S < Pn of the n-qubit Pauli group may be used to specify subspaces of the Hilbert space of n
qubits:

Definition 2. For some subgroup S < Pn, the stabilizer subspace VS is the subspace of the n-qubit Hilbert
space such that M |ψ〉 = |ψ〉 for all M ∈ S and all |ψ〉 ∈ VS .

Note that in order for VS to be non-trivial, it must be the case that −I /∈ S. Because all Pauli operators
square to identity and all pairs of Pauli operators either commute or anticommute, this implies several facts
about stabilizer groups:

• ±iP /∈ S for any P ∈ Pn with phase +1.

• P ∈ S → −P /∈ S.

• S is Abelian.

Because stabilizers are Abelian groups with all elements squaring to identity, any independent set of k Pauli
operators with phase ±1 (not including −I) generates a group S of size 2k (elements of S correspond to the
binary strings of length k). We would like to know the dimension of the stabilized subspace VS :

Lemma 1. Given a stabilizer S of size 2k, the stabilizer subspace VS has dimension 2−k dim(H), where
dim(H) is the dimension of the n-qubit Hilbert space.

Proof. Let the Pauli operators be {g1, . . . gk}. Then the projector onto their simultaneous +1 eigenspace is

PS =

k∏
i=1

1

2
(1+ gi) = 2−k

∑
u∈{0,1}k

Pu (9)
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where Pu =
∏k
i=1 g

ui
i . Notice that P 2

S = PS if and only if all pairs gi, gj commute. Consider the elements
Pu. Because the gi are independent, Pu = 1 only for u = 0. Because all non-identity Pauli operators are
traceless, we find

Tr [PS ] = 2−kTr [1] = 2−k dim(H) (10)

A particular stabilizer group may be written as the group generated by many different sets of generators.
A choice of k independent generators of a stabilizer S of size 2k is called a presentation. In order to choose
a presentation from the set of elements of S, we begin by picking any non-identity element. Having already
chosen some generators, we may pick the next from any element of S that is not in the subgroup generated
by the previously-selected generators. Many of the results in this section will follow from consideration of
the different presentations of a given stabilizer group.

The Tableau representation of the Pauli operators gives a compact way to represent stabilizer groups or,
equivalently, stabilized subspaces [11]:

Definition 3. Let S be a stabilizer group of size 2k with generators {g1, . . . , gk}. The Tableau representation
of S is

RS =


r

(X)
g1 r

(Z)
g1 r1

...
...

...

r
(X)
gk r

(Z)
gk rk

 (11)

where the rows of RS are 2n + 1-dimensional binary vectors. The first 2n elements of each row are the
Tableau representations of the generators gi and the final element is 0 if gi ∈ S and 1 if −gi ∈ S.

A particular application of the above lemma and the tableau representation is to the case k = n, when
the stabilizer subspace is one-dimensional - a pure state. The tableau representing this state is a n× (2n+1)
binary matrix, so the state is specified completely in polynomial space - this representation of a quantum
state is efficient! This is in stark contrast to the exponentially large representation in terms of the amplitudes
of each basis state. Of course, only a very special subset of pure states may be expressed as the subspaces
stabilized by a subgroup of Pauli operators:

Definition 4. An n-qubit stabilizer state is one-dimensional stabilizer subspace.

These states have a simple representation in terms of their stabilizer groups S:

Lemma 2. The density operator of a stabilizer state with stabilizer S has the form

ρS =
1

2n

∑
s∈S

s (12)

Proof. The stabilizer state ρS is a pure state which is the simultaneous +1 eigenstate of all 2n elements of
S. This is equivalent to being the simultaneous +1 eigenstate of each of the n independent generators in
some generating set of S. Let {gi} be such a set. Then the operator ρS is the projector onto the mutual +1
eigenspace:

ρS =

n∏
i=1

1

2
(1+ gi) =

1

2n

∑
u∈{0,1}n

n∏
i=1

guii =
1

2n

∑
si∈S

si (13)

Note that the Clifford group contains maps that send any stabilizer state to any other. Suppose we want
to find an operation that takes some stabilizer state σ to another stabilizer state ρ. Because all generators
of the stabilizer groups of σ and ρ commute, there is some Clifford operation Cσ that maps the single-qubit
Z operators to the generators of σ and some map Cρ that maps them to the generators of ρ. Then the map
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Figure 1: The single-qubit stabilizer polytope Pstab(1) has a three-dimensional representation in terms of the
Bloch vectors of its elements. On the left, it is depicted as a subset of the single-qubit quantum states (the
octahedron inside of the Bloch sphere). The vertices are the (pure) stabilizer states - the +1 eigenstates of
the operators ±X, ±Y , and ±Z. On the right, the edge graph of the polytope is shown. Vertices and edges
of the graph correspond to vertices and edges of the polytope. Vertices of the same color have stabilizer
groups {1,±P}, and correspond to orthonormal bases of the qubit Hilbert space.

Cρ ◦C−1
σ maps σ to ρ. Therefore the Clifford group acts transitively on both the Pauli group and on the set

of stabilizer states.
We will be interested not only in the pure stabilizer states, but also in convex combinations of these,

which may be viewed as probabilistic mixtures.

Definition 5. The n-qubit stabilizer polytope Pstab(n) is the convex hull of the set of n-qubit stabilizer
states.

Computations that remain within this polytope form a special subset of quantum computations, as we
will see later. One way to view the stabilizer polytope is as a solid in 4n − 1-dimensional Euclidean space.
In this representation, the states are represented by the non-identity part of the vector ~r of coefficients
of Pauli operators in their density operators. In this representation, the single-qubit stabilizer polytope is
three-dimensional, so may be depicted as in Fig. 1.

2.5 Characterization of the Stabilizer Polytope

Now that we have defined the stabilizer polytope, we may wish to know something about its structure. If
we specify stabilizers by their generalized Bloch vectors, then the n-qubit stabilizer polytope Pstab(n) is a
(4n− 1)-dimensional object. We may easily visualize Pstab(1). For larger n, however (even n = 2), we won’t
get very far with pictures. One way to get a handle on the structure of the polytope is by determining the
spatial arrangement of the vertices. Another is figuring out which pairs of vertices define edges, i.e., finding
the edge graph. In this section, we do both. We begin by counting the number of vertices of Pstab(n), i.e.,
the number n-qubit stabilizer states.

Theorem 3. The number of n-qubit stabilizer states is

N(n) = 2n
n−1∏
k=0

(
2n−k + 1

)
(14)

Proof. The proof of this fact will proceed via a probabilistic argument that follows the argument presented
in Ref. [11]. Suppose that we are hoping to construct a particular stabilizer S < Pn by drawing successive
generators uniformly at random from the Pauli set, assigning each one a phase ±1 as we go. We begin with
all Paulis available to us except the identity, and after adding each generator to the group, we remove from
the bin all Paulis generated by the elements we’ve already chosen as well as those that do not commute with
all of the elements already chosen. In order to construct the desired stabilizer, we must at each draw pick
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one of the elements of the stabilizer remaining in the bin and assign it the right phase. The probability of
this is

Prn(S) =

n−1∏
k=0

1

2

2n − 2k

22n−k − 2k
(15)

As we’ve made no assumptions about S, it must be that this probability is the same for all stabilizers.
Therefore, the number of n-qubit stabilizers is simply

N(n) =
1

Prn(S)
= 2n

n−1∏
k=0

(
2n−k + 1

)
. (16)

We will now present a more convoluted procedure for counting stabilizer states. Our general strategy
will be to construct stabilizer states from some “reference” stabilizer by choosing a subset of its stabilizer
group to be shared with a new stabilizer state, which we will be able to build in many different ways. The
challenge will be to avoid overcounting by determining the possible redundancies in descriptions of stabilizer
groups. The expression we find at the end will be far less attractive than the one just derived, but will
lead as a simple corollary to a characterization of the geometric structure of the stabilizer polytope. As an
added bonus, preparation for this more complicated counting method requires us to take a stroll through
the garden of stabilizer properties. Let us now begin this pleasant excursion.

Lemma 4. Let {gi} be a set of k independent Pauli operators, let c be a binary vector of length k. There
are 4 · 4n/2k Pauli operators P such that [P, gi] = 0 if and only if ci = 0.

Proof. Imposing commutation relations of P with the {gi} also imposes commutation relations of P with
all elements in the group generated by these elements. We are free to choose any presentation of this
group to specify commutation relations. In particular, we may always choose a presentation in which the
generators are partitioned into two sets {hi} and {rj}, neither of size more than n, such that [hi, rj ] = 0
unless i = j. There is some Clifford operation C that maps these sets to single-qubit Z and X operators.
Then we know that C(P ) has the commutation relations with these single-qubit operators imposed by c.
Then each individual relation halves the options for C(P ) by restricting the possible values of C(Pi). The
possible values of P are found simply by applying the inverse Clifford operation.

Lemma 5. Let NG(m) be the number of ordered generating sets of a stabilizer S of size 2m.

NG(m) =

m−1∏
k=0

(
2m − 2k

)
(17)

Proof. We may choose any element of S except the identity as the first generator. In order to choose the
kth generator so as to enlarge the group, we must choose elements of S not generated by any of the elements
already chosen. Then we have 2m − 2k options. Taking the product of the number of choices at each step
yields the stated identity.

Lemma 6. For an arbitrary stabilizer S of size 2n and subgroup G < S of size 2k, let R(n, k) be the number
of subgroups H < S such that G×H = S.

R(n, k) = 2k(n−k) (18)

Proof. Let gi be generators of G and let hi be a set of operators that, together with G, generate S. Then the
hi generate a subgroup H such that G×H = S. We may produce new subgroups H ′ such that G×H ′ = S
by mutliplying the generators hi by elements of S. Multiplying generators hi by elements of H leaves H
unchanged. We can multiply them however by elements of G in (2k)n−k ways. Consider two of these ways
and look at elements gihi and g′ihi. There is no way to make one of these elements from the group containing
the other, so the groups are distinct.
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Lemma 7. Let S1 and S2 be two n-qubit stabilizers, and define S12 = S1 ∩ S2. Let |S12| = 2k. Then for
some choice of G and H with trivial intersection such that S1 = S12 ×G and S2 = S12 ×H, G and H may
be written in NG(n − k) ways as the groups generated by ordered generating sets {gi} and {hi} such that
{gi, hj} = 0 if and only if i = j.

Proof. Choose arbitrary generating sets {gi} and {hj} for G and H. Define a binary matrix M such that
Mij = 1 if and only if {gi, hj} = 1. Adding row i to row k results in the matrix corresponding to the generator
sets resulting from the substitution gk → gigk, while swapping rows corresponds simply to a permutation of
the generators. Therefore, we are left with valid generating sets if we permute the rows of M so that the
first non-zero element of row i is not to the right of the first non-zero element of row i + 1. Having done
this, we find the smallest i such that the column j containing the first non-zero element of row i has more
than one 1 in it, and add row i to all other rows with a 1 in the jth column. This again leaves us with
valid generating sets for G and H. Repeating this leaves us with an upper diagonal matrix encoding the
commutation relations between generating sets for G and H. Now we look at the bottom-right-most corner.
If there is a 1 there, add this row to all rows above that have a 1 in the final column. As above, we’re left
with valid generating sets. Repeat this process. If we can repeat it for all columns, we’re left with a diagonal
matrix, which describes generating sets of the kind posited in the statement of the fact. If this procedure
fails, it is because at some point we have a 0 instead of a 1. But then there is a row that is entirely 0,
corresponding to a generator g of G that commutes with all generators of H. However, because g ∈ S, g
must also commute with all elements of S12. Then g commutes with all elements of S12 × H = S2. But
g /∈ H. This is a contradiction by one of the previous facts. Therefore, we must be able to produce such
generating sets. Moreover, having generated one, we can generate any other such pair of sets by performing
row additions and then performing the opposite column additions (i.e., add row i to row j and then add
column j to column i). There is no other way to maintain the diagonal structure of M , so there are as many
such pairs of generating sets as there are generating sets of G, and fixing the presentation of G also fixes the
presentation of H.

Lemma 8. Given a stabilizer S, any Pauli operator P /∈ S anticommutes with exactly 2n−1 elements of S.

Proof. Let S be the stabilizer generated by {Zi|i = 1, 2, . . . , n} and let P /∈ S be arbitrary. The elements of
S are of the form Su =

∑
i Z

ui
i for u an n-bit binary vector. Let v 6= 0 be the n-bit vector such that vi is

0 if Pi = I or Z and 1 if Pi = X or Y . Then if the modulo two inner product of u and v is 0, [Su, P ] = 0,
while if it is 1, {Su, P} = 0. There is a bijection between elements u ∈ {0, 1}n with (u, v) = 0 and those with
(u, v) = 1 (simply flip the bit of ui for i the smallest value such that vi = 1). Therefore, half of the elements
of S anticommute with P . This is the desired result for a particular choice of S. The Clifford group comes
to the rescue, because we can map S to any other stabilizer, preserving commutation relations and subgroup
inclusion.

Theorem 9. Let N(n) be the number of n-qubit stabilizer states.

N(n) =

n∑
k=0

2k2
1
2 (n(n+3)−k(k+3)) (2−n; 2)n

(2−k; 2)k
(
2−(n−k); 2

)
n−k

(19)

The symbols (a; q)k are q-Pochhammer symbols or q-shifted factorials, which for k > 0 are defined as:

(a; q)k =

k−1∏
j=0

(1− aqj) (20)

Proof. Consider an arbitrary reference stabilizer state with n-qubit stabilizer group S. How many ways
can we construct another stabilizer group S′ by making a series of choices about its relationship to S? To
streamline the argument, we’ll ignore the possible phases of the Pauli operators, and tack these choices on at
the end. First we choose the size of the intersection S ∩ S′. Because we may always find a maximum set of
shared generators, the subgroup generated by which is precisely the intersection between the stabilizers, for
any S′ we have |S ∩ S′| = 2k for some integer 0 ≤ k ≤ n. Once we have chosen a size 2k for the intersection,
we choose a particular subgroup Sint < S of that size, and construct a stabilizer S′ such that S ∩ S′ = Sint.
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Suppose that there are I(n, k) distinct subgroups Sint < S of size 2k and E(n, k) distinct stabilizers S′ such
that S ∩ S′ = Sint. Tacking on at the end 2n choices about the signs of the Pauli operators (we are free to
choose phases ±1 for each of n generators) we have that the number of n-qubit stabilizers is

N(n) = 2n
n∑
k=0

I(n, k)E(n, k) (21)

We will now examine each of these terms in turn to find the expression given in the theorem. First, we
consider the number of possible intersections (subgroups of S) of size 2k. To choose a subgroup Sint < S of
size 2k, we first choose a particular ordered list of n independent generators of S. Then we take the first k of
these. Sint is the group generated by these k generators. There are NG(n) ways to do this. Of course, there
is a large amount of redundancy in this procedure. First, Sint itself admits NG(k) ordered presentations in
terms of independent generators, and the subgroup generated by the remaining n−k generators of S admits
NG(n−k) ordered presentations. We must also account for the fact that there are R(n, k) subgroups H < S
such that Sint ×H = S. Then we have

I(n, k) =
NG(n)

NG(k)NG(n− k)R(n, k)
(22)

Once we have chosen a particular intersection Sint = S ∩ S′, we must extend it in such a way as to produce
a group S′ satisfying this property. In other words, we want to find groups H such that Sint × H = S.
This is equivalent to choosing n − k independent generators not in S that, together with Sint, generate S′.
Let G < S be generated by the n − k generators of S not chosen to be in Sint. Then Sint × G = S. We
know that there is a unique ordered presentation of H such that {hi, gj} = 0 if and only if i = j. Therefore
we consider constructing H by choosing n − k generators. They must be independent of each other and
of generators of Sint in order to generate a complete stabilizer S′. They must also be independent of the
generators of G in order that S ∩S′ = Sint. Each of them then obeys n commutation relations with distinct
operators, the generators of S. In addition, as we add more generators to H, the new ones must commute
with those already chosen. Then after we have added j generators, we have 4n/2n+j = 2n−j choices for the
next. Having performed this procedure to extend Sint to a new stabilizer S′ = Sint × H, we need to take
into account the multiplicity of subgroups H < S′ such that S′ = Sint ×H. This results in the expression

E(n, k) =

∏n−k−1
k=0 2n−j

R(n, k)
(23)

Using these expressions for I(n, k) and E(n, k) and the expressions for NG(m) and R(n, k) given above, we
find the expression for N(n) given in the statement of the theorem.

Equipped with an expression for the number of n-qubit stabilizer states as a sum, rather than a product,
over k, we are in a position to determine the spectrum of inner products between the generalized Bloch
vectors of the stabilizer states. Because these vectors are identically normalized, this tells us the distribution
of distances between a given stabilizer state and all others when the stabilizer polytope is represented in
(4n − 1)-dimensional real space.

Theorem 10. Given an arbitrary vertex S̃ of the stabilizer polytope, the number of stabilizer states S with
a particular value Ω of ~rS̃ · ~rS is given by

Nn(Ω) =

{ ∑n
k=0

(
2k − 1

)
Q(k) Ω = −1

Q(k) Ω = 2k − 1; k = 0, . . . , n
(24)

Q(k) = 2
1
2 (n(n+3)−(k(k+3)) (2−n; 2)n

(2−k; 2)k
(
2−(n−k); 2

)
n−k

(25)

Proof. Once we have established a particular set of k generators to be shared by S and S̃, we are free to assign
phases ±1 to each of these generators of S in 2k ways. Consider choosing a binary string u of length k and
assigning phase (−1)ui to generator gi. Any Pauli in the intersection Sint may be written as Pv =

∏k
i=1 g

vi
i
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Figure 2: The number Nn (Ω) of n-qubit stabilizer states S with generalized Bloch vectors having inner
product Ω with the generalized Bloch vector of some fixed n-qubit stabilizer state S̃ for multiple values of n.

for some other binary string v of length k. There is a sign difference between the Pauli in S and the Pauli in
S̃ if and only if u · v = 1. As above, this is true for exactly half of the strings v when u 6= 0, and the identity
always has sign +1, so the inner product of the generalized Bloch vectors is −1 independent of k. There are
2k − 1 strings u for which this is the case. In the case u = 0, no phases are flipped, and the inner product is
2k − 1.

Although this expression is horrifying, it yields a surprisingly nice form when plotted on a log-log plot
as in Fig. 2. Having elucidated some of the geometric structure of the n-qubit stabilizer polytope, we turn
to its combinatorial structure. In the following theorem, we characterize the edge graph of the polytope.
This is the graph that has the pure stabilizer states as vertices and has an edge connecting two stabilizer
states Q1 and Q2 if and only if no convex combination of Q1 and Q2 admits a decomposition in terms of
other pure stabilizer states. The proof will proceed by the usual trick - mapping the stabilizers to easily
manipulable stabilizers with single-qubit generators by use of the Clifford group. Then we simply examine
the coefficients of each Pauli operator in the convex combination of stabilizers to determine whether distinct
decompositions are possible.

Theorem 11. The pure stabilizer states corresponding to stabilizer groups Q1 and Q2 form an edge of the
stabilizer polytope if and only if there are Pauli operators P such that P ∈ Q1 and ±P /∈ Q2.

Proof. A pair of stabilizers states with stabilizer groups Q1 and Q2 form an edge of the stabilizer polytope
if and only if for all p, there is no other set of stabilizers Sj and probabilities qj such that∑

j

pj
∑
P∈Sj

P = p
∑
P∈Q1

P + (1− p)
∑
P∈Q2

P. (26)

In other words, the representation of convex combinations ρ of Q1 and Q2 in terms of Q1 and Q2 is unique
among representations in terms of pure stabilizers states.

For convenience of notation, for a set P of Pauli operators, let P̄ denote the set obtained by flipping the
signs of all operators in P , and let A+B denote A ∪B and A−B denote A ∪ B̄. For pure stabilizer states
with stabilizer groups Q1 and Q2, define the following pairwise disjoint sets: P+ = Q1 ∩Q2, P− = Q1 ∩ Q̄2,
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and Pi = Qi ∩ (Qj)
c ∩
(
Q̄j
)c

for i 6= j. Note that P+ is never empty, as the identity is always an element
of a stabilizer group. Then we may write Q1 = P+ + P− + P1 and Q2 = P+ − P− + P2. Then a convex
combination of the two states has density operator

ρ = p
∑
P∈Q1

P + (1− p)
∑
P∈Q2

P =
∑
P∈P+

P + (2p− 1)
∑
P∈P−

P + p
∑
P∈P1

P + (1− p)
∑
P∈P2

P. (27)

For convenience, the states have been normalized to trace 2n.
Following the argument made earlier in this paper, we see that we may write the two stabilizer groups

in the form Q1 = Q+ ×Q− ×H and Q2 = Q+ × Q̄− ×G for some (not necessarily unique) H and G such
that H ∩Q2 = ∅ and G ∩Q1 = ∅. We may then choose presentations

Q1 =
〈
{k(+)
i } ∪ {k

(−)
i } ∪ {hi}

〉
, Q2 =

〈
{k(+)
i } ∪ {−k

(−)
i } ∪ {gi}

〉
(28)

such that all the k
(±)
i , hi, and gi are independent, the k

(±)
i commute with the hi and gi, and [hi, gj ] = 0

unless i = j. Then there is a Clifford group operation C such that

C(Q1) = 〈{Zi} ∪ {Zj} ∪ {Zk}〉 , C(Q1) = 〈{Zi} ∪ {−Zj} ∪ {Xk}〉 (29)

where i ∈ {1, . . . , I}, j ∈ {I + 1, . . . , I + J}, and k ∈ {I + J + 1, . . . , n} for some I + J ≤ n. If we can find
some other stabilizers Sj and probabilities qj such that∑

j

pj
∑
P∈Sj

P = p
∑

P∈C(Q1)

P + (1− p)
∑

P∈C(Q2)

P (30)

then we have ∑
j

pj
∑

P∈C−1(Sj)

P = p
∑
P∈Q1

P + (1− p)
∑
P∈Q2

P. (31)

Therefore, we need only consider pairs of stabilizer states with generating sets composed of single-qubit X
and Z operators, a much more concrete and manipulable problem than the general case. This decomposition
allows us to break the problem down into three cases.

Case 1: P+ is non-empty, P− = ∅ and P1, P2 = ∅. This is simply the case in which Q1 = Q2 = P+. Then
ρ is a pure state, so may not admit any other decomposition in terms of pure states. Therefore, Q1 = Q2

defines a vertex of the stabilizer polytope.
Case 2: P+, P−, P1, and P2 are all non-empty. How can the elements of Q1 and Q2 be distributed among

the Sj? Clearly we must have P+ < Sj for all j, because the coefficient of P+ must be one. Now consider
Zk and Xk. These anticommute, so may not both be elements of the same Sj , and their coefficients in the
convex combination of Q1 and Q2 are p and 1− p, respectively. Therefore, we have:

p =
∑

j|Zk∈Sj

qj , 1− p =
∑

j|Xk∈Sj

qj . (32)

Then the Sj are partitioned into two sets, one with Xk and the other with Zk. Now suppose that there is
some j such that Zk, Xk′ ∈ Sj for k 6= k′. The coefficient of ZkZk′ in the convex combination of the Sj is∑

j|Zk,Zk′∈Sj

qj <
∑

j|Zk∈Sj

qj = p. (33)

This is a contradiction. Then the Sj are partitioned into two sets, one with all single-qubit Z operators on
the last n− I − J qubits and the other with all single-qubit X operators on the last n− I − J qubits.

Now we move on to the last set of generators, the ±Zj . Suppose that for some j, −Zj , Zk ∈ Sj . Then
the coefficient of ZjZk in the convex combination is∑

j|Zj ,Zk∈Sj

qj −
∑

j|−Zj ,Zk∈Sj

qj <
∑

j|Zk∈Sj

qj = p. (34)
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This is a contradiction. Therefore, for all j, either Sj = Q1 or Sj = Q2. Then the decomposition in terms
of the Sj is not distinct from that in terms of the Qi, so the Q1 and Q2 define an edge of the polytope.

Case 3: P+ and P− are non-empty, P1, P2 = ∅. Then C(Q1) and C(Q2) are both computational basis
states:

C(Q1) = |0 . . . 0〉|0 . . . 0〉 := |0L〉 (35)

C(Q2) = |0 . . . 0〉|1 . . . 1〉 := |1L〉. (36)

Define also |+L〉 = 1√
2

(|0L〉+ |1L〉) and |−L〉 = 1√
2

(|0L〉 − |1L〉). We can use these as codewords corre-

sponding in the obvious way to the single-qubit states |0〉, |1〉, |+〉, and |−〉. It is easily verifiable that

p|0〉〈0|+ (1− p)|1〉〈1| = (1− p)|+〉〈+|+ (1− p)|−〉〈−|+ (2p− 1)|0〉〈0|. (37)

For p ≥ 1
2 (for p < 1

2 we may simply swap the roles of |0〉 and |1〉), the right hand side is a convex combination
of (single logical-qubit) stabilizer states, so applying the decoding operation, we find convex combination of
three stabilizer states that is equal to the combination pC(Q1) + (1− p)C(Q2). Therefore, Q1 and Q2 do not
define an edge of the polytope.

Note that for Q1 6= Q2 it is not the case that the representation of a state as a convex combination of Q1

and Q2 is unique among representations in terms of convex combinations of arbitrary pure states. Indeed,
any mixed state admits infinitely many decompositions in terms of pure states. Also note that stabilizer
bases for the n-qubit Hilbert space correspond to subsets B ⊂ V of the vertices of the stabilizer polytope
such that all elements of B are not adjacent in the edge graph of the polytope. The edge graph of the n = 1
stabilizer polytope is depicted in Fig. 1. Already for n = 2, the graph is useless from a visualization point
of view (it is almost the complete graph on sixty vertices).

3 Stabilizer Protocols and Efficient Classical Simulation

It is often interesting to define subtheories of quantum mechanics or computation by restricting the allowed
operations to a subset of those allowed by the complete theory. One example of this type of restriction that
leads to interesting properties is stabilizer computation. To define this, we follow [2,3].

Definition 6. A stabilizer protocol is a protocol consisting of only the following operations:

• Preparation of qubits in the state |0〉

• Clifford operations

• Measurement in the Z basis on the final qubit

• Partial trace

• Any of these operations conditioned on the outcomes of measurements or on classical randomness

Definitions of stabilizer computation differ slightly from author to author. For instance, some allow for
preparation of any stabilizer state or measurement of any Pauli operator. However, due to the transitive
action of the Clifford group on the Paulis and on the stabilizer states, these operations are related to the
ones allowed here by a Clifford operation. This means, first of all, that the protocol is itself a stabilizer
protocol, but also, because a Clifford gate may be implemented with a polynomial number of elementary
gates, that the models have equivalent power in terms of the comutational complexity of any algorithm.

Stabilizer protocols are not universal for quantum computation. For instance, any pure state other than
the stabilizer states is inaccessible. Clifford operations also do not generate the full unitary group. However,
they are still capable of performing many interesting tasks usually associated with quantum behavior such
as quantum teleportation, superdense coding, and quantum error correction [6]. Note that, because we may
simulate classical computation efficiently by a stabilizer protocol (simply by using only the qubit basis states
with no superpositions), stabilizer protocols are at least as powerful as classical computation.
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In fact, stabilizer protocols have the same power as classical computation, because they may be efficiently
simulated by a classical computer. To demonstrate this, it is necessary first to decide what exactly we mean
by simulation of a quantum computer. In [17], a distinction is drawn between strong and weak simulation. A
strong simulation of a quantum computation is a classical algorithm that produces a probability distribution
for the possible outcomes. A weak simulation is a classical algorithm that samples from this distribution. In
discussing the power of subtheories of quantum computation, it is reasonable to consider weak simulation,
because the output is the same as the output of the quantum computer under consideration: a random
number sampled from a distribution.

The Gottesman-Knill theorem concerns the simulability of stabilizer computation. Typical proofs of
the theorem give explicit methods of simulation. Both weak and strong efficient classical simulation are
attainable. The following statement of the theorem is quoted from Ref. [6].

Theorem 12. “Suppose a quantum computation is performed which involves only the following elements:
state preparation in the computational basis, Hadamard gates, phase gates, controlled-NOT gates, Pauli
gates, and measurements of observables in the Pauli group (which includes measurement in the computational
basis as a special case), together with the possibility of classical control conditioned on the outcome of such
measurements. Such a computation may be efficiently simulated on a classical computer.”

To demonstrate the possibility of efficient classical weak simulation of stabilizer protocols, i.e., to prove
the theorem, an explicit construction is presented. This construction was first described in [5] and was
expanded in [11].

The strategy for simulating a stabilizer protocol will be to keep track of the tableau representation of
the state of the system. Because the system is initialized in a stabilizer state and only subjected (possible
governed by a classical probability distribution) to operations that map stabilizer states to other stabilizer
states, the state will always admit such a representation. As discussed earlier, this representation is efficient.
Here we will give efficient methods for simulating the possible operations. Probabilistic aspects of the pro-
tocols will simply be imported directly into the classical protocol. Together, these will prove that stabilizer
computation is no more powerful than classical computation. In part for simplicity and convenience, and in
part because it might be desirable actually to implement these simulation techniques, I will present these
methods in as close to a pseudocode manner as possible.

Preparation of Qubits in the State |0〉 If we begin with an n-qubit stabilizer state with stabilizer
S = 〈si〉 and tensor in an additional single qubit (which we will assign index n + 1) in the state |0〉, the
resulting state is stabilized by S ⊗ 1× 1n ⊗Z. Therefore, a generating set for the group is {si} ∪Zn+1. We
may therefore represent this operation by updating the tableau as follows:

R =
[
RX RZ RP

]
−→ R′ =

[
RX 0 RZ 0 RP
0 0 0 1 0

]
. (38)

Clifford Operations The generators of the Clifford gates are the Hadamard, phase, and controlled NOT
gates. These have the following actions on the generators of the Pauli group:

H :

{
X 7→ Z
Z 7→ X

S :

{
X 7→ Y
Z 7→ Z

CNOT :


XI 7→ XX
IX 7→ IX
ZI 7→ ZI
IZ 7→ ZZ

. (39)

These actions lead to rules for updating the stabilizer tableau. ADDTO(i,j) calls for column i to be added to
column j. TIMES(i,j) returns the bitwise product of columns i and j, while PLUS returns the bitwise sum.
SWAP(i,j) switches columns i and j. All arithmetic is performed modulo two.
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f unc t i on [ tab leau ] = C l i f f o r d ( tableau , gate , i , j )

[ n ,− ] = s i z e ( tab leau ) ;

i f gate = H
addto ( t imes ( i , i+n ) ,2 n+1);
swap ( i , i+n ) ;

e l s e i f gate = S
addto ( t imes ( i , i+n ) ,2 n+1);
addto ( i , i+n ) ;

e l s e i f gate = CNOT
addto ( t imes ( t imes ( i , j+n ) , p lus ( j , i+n , 1 ) ) , 2 n+1);
addto ( i , j ) ;
addto (n+j , n+i ) ;

end

The first step of each operation is an update of the phase column. The only time this need be done is
for Y in both phase and Hadamard gates, and for Y Y and XZ in CNOT. Constructing truth tables for the
terms being added to the phase column demonstrates that these are precisely the conditions under which a
bit flip is performed.

Measurements in the Z basis on the Final Qubit There are three scenarios we must consider. In
the case that Z ∈ S, a measurement returns the value +1 and leaves the state unchanged. If −Z ∈ S, a
measurement returns −1 and leaves the state unchanged. If ±Z /∈ S the probability of measuring +1 is one
half. We simulate sampling from this distribution by flipping a fair coin. In this case, however, we must also
update the stabilizer. We know that Z /∈ S implies that Z commutes with exactly half of the members of
S. The eigenvalue of these operators should remain unchanged by measurement of Z, so we leave them in
S. These correspond to n− 1 generators. Then we simply remove the generator that doesn’t commute with
Z and replace it by Z. This results in the stabilizer of the post-measurement state. We represent this in the
tableau by leaving alone any generator that has a zero in the nth column (corresponding to Zn or In). We
replace the first row (call it r) that has a one in the nth column with the row corresponding to Zn. Then we
multiply every other row Pauli P with Xn by the Pauli corresponding to the first row. This corresponds by
adding r to every other row m that has a one in the nth column. Because rm is in S, the result is a tableau
with n− 1 generators that are in S and commute with Zn. This then is the generating set for the stabilizer
of the post-measurement state.

4 Magic - Universal Quantum Computation and Resource Theory

In the last section, we defined a particular subtheory of quantum computation, stabilizer computation, and
demonstrated its equivalence to classical computation from a mutual efficient simulability point of view. In
this section, we will consider those states and operations that are not accessible from the stabilizer framework.
States that may not be prepared by any stabilizer protocol are known as magic states [3]. We will see that
these states can provide a resource, magic, that allows stabilizer computation to be extended to fault-tolerant
universal quantum computation (UQC) via magic state distillation, first introduced in Ref. [2]. We will also
discuss magic monotones, functions that measure the amount of magic possessed by quantum states. A new
monotone will be introduced. We begin with a brief discussion of error correction and fault-tolerance.

4.1 Error Correction

This discussion of QECCs follows very loosely the much more detailed account in Ref. [6]. Suppose that the
letters x of some alphabet correspond to the states |ψx〉 of some Hilbert space Hclear that also describes a
physical system. We would like to be able to send a message by sending a sequence of these systems prepared
in the appropriate states. Unfortunately, between the preparation of the message and its receipt, errors may
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occur due to environmental noise. Suppose that these errors are described by quantum operations from some
set E . We would like to be able to detect and correct these errors in some way. In classical communication,
a common way to do this is using redundancy. We can simply send some large number of copies of each
letter, and then apply a majority-voting procedure to decode. In the quantum case, this is note possible due
to the no-cloning theorem [6]. However, we can still use the notion of redundancy.

Consider an auxiliary system described by the Hilbert space Haux and define Hcrypt = Hclear ⊗ Haux.
Sending systems described by Hcrpyt trivially introduces redundancy in our message, because there are
dim(Haux) orthogonal states in Hcrypt for each state |ψx〉 ∈ Hclear. In practice, however, this is unlikely to
be a useful encoding. For example, the errors E may be local in some sense (for instance, one- or two-qubit
operators if the systems are systems of qubits). Therefore, elements of E may map |ψx〉 ⊗ |ψ〉 to |ψx′〉 ⊗ |ψ〉
for some x′ 6= x. Then there is no way to distinguish between the cases in which an error occurred and the
cases in which x′ was the intended letter.

To deal with this problem, we would like somehow to spread the information throughout the entirety
of the physical system corresponding to Hcrypt. To do so, we apply an encoding operation described by a
unitary operator Uen on Hcrypt. This has the effect of mapping the elements of Hplain (the letters) onto a
possibly non-separable (with respect to the plain/aux partition) subspace of Hcrypt. This subspace is known
as the codespace or QECC. If Uen was chosen appropriately given E , then errors will map states in the
QECC subspace to states in other subspaces of Hcrypt, with the same error sending all states to the same
subspace. These subspaces are distinguished by their eigenvalues under some set of operators. Measuring
these operators, we determine the syndrome S of the error (the collection of eigenvalues), and can apply a
correction operator conditioned on the syndrome. This operator maps the subspace HS corresponding to
the measured syndrome to the QECC, so we can simply apply U−1

en to recover the cleartext of our message.
Note that it is by no means clear from this discussion how to go about finding encoding operations and
syndrome measurements with the necessary properties.

The method of error detection described here yields a result that might be surprising: it suffices to be
able to detect a finite number of errors, despite the fact that an (uncountably) infinite number of errors may
occur. This convenient feature is due to the measurement step of the protocol, which projects the noisy state
onto one of a finite number of error subspaces.

4.2 Fault-Tolerant UQC via Magic State Distillation

Given the large array of possible sources of error in any physical implementation of quantum computation or
quantum information processing, it is important to be able to implement these schemes fault-tolerantly. One
way in which this may be achieved is via concatenated QECCs. Concatenation of QECCs is the procedure
of applying one encoding circuit to the output of another, creating “layers” of encoding. The threshold
theorem [13] demonstrates that concatenated codes may be used to achieve arbitrarily low logical error
rates provided the physical error rate is below a certain threshold, and provided that the encoded gates not
propagate single-qubit errors to too many other qubits. In the original work of Aharonov and Ben-Or, this
latter constraint is formalized via the notion of spread, the largest number of qubits in the output register
of a block affected by a single error in that block. In [6], the presentation of QECCs is in terms of encoded
gate implementations with spread 1, which are known as transversal implementations. Many QECCs admit
transversal implementations of some gates, for example the Steane code and Hadamard, phase, and CNOT
gates. Unfortunately, it has been shown that there is no QECC that admits a universal set of transversal
gates [14,18]. This motivates the design of schemes for universal quantum computation that do not rely on
transversal universal gate sets.

Subtheories of quantum computation are conveniently specified by the set of allowed elementary oper-
ations: preparations; transformations; and measurements. Often, forbidden elementary operations of one
type may be performed using available elementary operations of another type. We have already seen this
in the computational equivalence of the multiple definitions of stabilizer computation. This feature also
allows restricted models of computation to be extended by access to additional resources. A well-known
example is that of LOCC, the set of computations allowing local operations and classical communication.
This subtheory is derived from universal quantum computation by the removal of entangling gates between
two subsystems. If a Bell pair is shared between these subsystems, however, a controlled-NOT gate may be
implemented between them (Fig. 3).
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Figure 3: Restricted gatesets can be used to perform universal quantum computation if access to certain
resource states is allowed. (a) Access to a single Bell pair 1√

2
(|00〉+ |11〉) allows a nonlocal CNOT gate to

be performed using only local operations and classical control (LOCC) [15]. Note that there is a well-defined
sense of locality in the circuit on the left, which is specified by the choice of forbidden CNOT gate. The
circles are measurements in the basis indicated inside. (b) Access to a single magic state allows the π/8 gate
or its inverse to be performed with equal probability using only operations and measurements available in
stabilizer protocols. The rounded box indicates measurement in the specified basis and the left-pointing box
indicates input of a qubit in the magic state |A0〉.
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Similarly, a π/8 gate may be performed using only stabilizer operations given access to a single pure
state of a particular type (Fig. 3). Because the ability to perform π/8 gates as well as Clifford gates yields
universal quantum computation (UQC), access to (an unlimited number of copies of) in addition to the ability
to perform stabilizer protocols allows UQC. However, such states lie outside of the stabilizer polytope. Then
all that we’ve done is traded the need for non-stabilizer operations for the need for non-stabilizer states.
Because we have assumed that only stabilizer operations may be performed fault-tolerantly, we need some
way to get copies of this resource state via a stabilizer protocol from imperfectly prepared approximations.

One such strategy for universal fault-tolerant quantum computation is magic state distillation, introduced
in [2]. This procedure works by starting with a large number of qubits in a state close enough (in a sense
that will be made precise later) to the desired state, and then performing a particular stabilizer protocol
eventually to produce a single-qubit state with arbitrarily high fidelity with the desired pure resource state.
One of the methods from [2] is presented in detail in the next section.

4.3 A Particular Distillation Protocol

The original protocol for magic state distillation makes use of a particular type of QECC known as CSS codes.
These are really nothing more than partitions of the Hilbert space of a quantum system into simultaneous
eigenspaces of a set of operators. In order to understand how the distillation procedure works, it will be
necessary first to review how measurements work in these codes.

Definition 7. The code CSS(A,LA;B,LB) is the following decomposition of the n-qubit Hilbert space:(
C

2
)⊗n

= ⊕
µ∈L∗A

⊕
η∈L∗B

H(µ, η) (40)

where A and B are anti-commuting Hermitian operators that square to identity and LA and LB are orthog-
onal binary vector spaces. The subspaces H(µ, η) are defined by

A(u)B(v)H(µ, η) = (−1)µ(u)+η(v)H(µ, η) ∀(u, v) ∈ LA × LB (41)

Note that A(u) and B(v) commute by the orthogonality of the subspaces LA and LB . The dual vectors µ
and η are known as the A and B syndromes, respectively. They are simply the eigenvalues of the operators
A(LA) and B(LB).

In [2], a particular CSS code is considered. Let A = 1√
2

(X + Y ). Let f be a function of four Boolean

variables and let [f ] ∈ {0, 1}15 be a vector containing the values of f on all values of the four variables
except 0000. Let L1 be the linear subspace spanned by the indicator functions [xi] and let L2 be the linear
subspace spanned by the indicator functions [xi] and [xixj ]. The subspaces have cardinalities, respectively,
24 and 210, so the pair L1×L2 has cardinality 214. Then each subspace H(µ, η) of the Hilbert space (C2)⊗n

has dimension 2n−14. We will consider the case n = 15, which corresponds to the encoding of a single logical
qubit in fifteen physical qubits. The following lemmas about this code are proven in [2]

Lemma 13. Consider two CSS codes, CSSZA(Z,L2; A,L1) and CSSZX(Z,L2; X,L1) associated, respectively,
with the decompositions (

C
2
)⊗n

= ⊕
µ∈L∗2

⊕
η∈L∗1

HZA(µ, η) = ⊕
µ∈L∗2

⊕
η∈L∗1

HZX(µ, η) (42)

For any η ∈ L∗1, HZA(0, η) = HZX(0, η) and for any µ ∈ L∗2 there is some w ∈ {0, 1}15 such that for any
η ∈ L∗1, HZA(µ, η) = A(w)HZX(0, η).

Lemma 14. The following hold for the vector spaces L1 and L2:

• L⊥1/2 = L2/1 ⊕ [1]

• For all u ∈ L1, |u| ≡ 0 mod 8.

We are now in a position to be able to describe the distillation procedure:

1. Prepare 15 copies of the approximate magic state ρ. Initial error probability is defined as ε = 〈A1|ρ|A1〉.
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2. Dephase each copy of ρ by applying A with probability one half, i.e., ρ→ 1
2

(
ρ+AρA†

)
, ensuring that

the density operators are diagonal in the eigenbasis {|A0〉, |A1〉} of the operator A.

3. Measure the operators Z(L2) to determine the Z-syndrome µ ∈ L∗2.

4. Find w ∈ {0, 1}15 such that for any η ∈ L∗1, HZA(µ, η) = A(w)HZX(0, η) and apply A(w)†.

5. Measure the operators X(L1) to find η. Declare failure if η 6= 0.

6. Apply the Clifford operation that maps X⊗15, Y ⊗15, and −Z⊗15 to the single-qubit X, Y , and Z
operators on the first qubit.

7. Discard qubits 2-14.

The procedure works as follows (all calculations have been deferred to Appendix A):

In the {|A0〉, |A1〉} basis, application of the dephasing channel effects the following transformation on each
single-qubit state:

ρ =

(
1− ε ρ01

ρ10 ε

)
→
(

1− ε 0
0 ε

)
= (1− ε)|A0〉〈A0|+ ε|A1〉〈A1| := ρd (43)

Then the total fifteen-qubit state is given by

ρin = ρ⊗15
d =

∑
u∈{0,1}15

ε|u|(1− ε)15−|u||Au〉〈Au| (44)

where |u| denotes the Hamming weight of a binary vector u (the number of ones) and |Au〉 = Au1
⊗ Au2

⊗
. . .⊗Au15 . Measurement of the Z-syndrome, application of the correction operator A†(w), and post-selected
measurement of the X-syndrome has the effect of projection onto the subspace HZA(0, 0). This subspace is
spanned by the orthonormal basis states∣∣∣AL0/1〉 = |L2|−

1
2

∑
v∈L2

∣∣Av+[0/1]

〉
(45)

The (unnormalized) fifteen-qubit state after this projection is

ρs = |L2|−1
∑
u∈L2

ε|u|(1− ε)15−|u|∣∣AL0 〉〈AL0 ∣∣+ |L2|−1
∑
u∈L2

ε15−|u|(1− ε)|u|
∣∣AL1 〉〈AL1 ∣∣ (46)

The probability of success for the subroutine is then

ps = |L2|Tr [ρs] =
∑
u∈L⊥1

ε15−|u|(1− ε)|u| (47)

The factor of |L2| comes from the fact that any measured value of µ may lead to success. Now we may apply
the decoding operation, which maps the state of the logical qubit to the state of a single physical qubit, i.e.,
C : α

∣∣AL0 〉〈AL0 ∣∣+ β
∣∣AL1 〉〈AL1 ∣∣ 7→ α|A0〉〈A0|+ β|A1〉〈A1|. This yields the (normalized) output state

ρout =
|L2|−1∑

u∈L2
ε|u|(1− ε)15−|u||A0〉〈A0|+ |L2|−1∑

u∈L2
ε15−|u|(1− ε)|u||A1〉〈A1|

Tr [ρs]
(48)

From this expression, we may read off the post-subroutine error probability

εout =

∑
v∈L2

ε15−|v|(1− ε)|v|∑
v∈L⊥1

ε15−|v|(1− ε)|v|
(49)

To distill a good approximation of the state |A0〉, we begin with a large number N of poorer approximations
ρ(0) with error probability ε(0), partition them into groups of fifteen, and apply the distillation subroutine. In

17



the cases in which the subroutine succeeds, the output state is some ρ(1) with error probability ε(1). Again,
we partition the (at most N/15) copies of ρ(1) into groups of fifteen and apply the distillation subroutine
to each group. This process continues as long as there are enough copies of the state, eventually yielding a
single state ρ(n) with error probability ε(n) after n iterations. However, in general ε(n) is not smaller than
ε(0). In Fig. 4a the output error of the distillation subroutine is plotted against input error. The threshold
error probability is found numerically to be εth ≈ .14. Also relevant is the probability of subroutine success,
plotted in Fig. 4b. Because success probability tends to one as input error probability goes to zero, distillation
succeeds in the case ρ(0) < ρth, in the sense that in the limit of large N , the output state n is an arbitrarily
good approximation of |A0〉.

Note that what we’ve referred to as a physical qubit throughout this section will not, in fact, be a physical
qubit in any implementation of magic state distillation. Rather, it will be an encoded qubit. Because we know
how to perform the stabilizer operations that make up the distillation protocol fault-tolerantly on encoded
qubits, we may forget about this fact. Also note that this discussion has proceeded from the assumption that
we may prepare as many identical copies as we like of some resource state ρ(0). This of course will not be
the case, due to the fact that ρ(0) must be a state outside of the stabilizer polytope, and so its preparation is

not assumed to be perfectly implementable. However, small variations in the initial error probabilities ε
(0)
i

will not break the method, as illustrated in Fig. 5.

4.4 Magic as a Resource - Magic Monotones

Resource theories provide a framework for considering what is possible with a limited set of “free” operations
and some set of “resources” that extend the power of these free operations. In the quantum information
setting, the best-known resource theory is that of entanglement, which treats local operations and classical
communication (LOCC) as free and entanglement as a resource. Many of the applications of entanglement
theory concern quantum communication. Because magic states may be used to extend stabilizer computation
to UQC, magic theory, in which stabilizer operations are free and magic states carry the resource, is relevant
to the discussion of quantum computation [3].

An important type of tool in any resource theory is the monotone. A resource monotone is a function
from quantum states to the reals that indicates the amount of resource possessed by the state. The only
constraint on such a function is that it be non-increasing under free operations, i.e., M(Λ(ρ)) ≤ M(ρ)
for any state ρ and any free operation Λ. However, other properties, such as additivity under the tensor
product, may be desirable in order for the monotone to be a useful tool for the characterization of states.
Magic monotones are defined as follows in Ref. [3]:

Definition 8. A map M from the set of all density operators to the reals is a magic monotone if and only
if on average M (Λ(ρ)) ≤M(ρ) for any stabilizer protocol Λ.

In particular, this means thatM must be invariant under Clifford unitaries and tensoring-in of stabilizer
states (because both of these operations have inverses that are also stabilizer operations) and non-increasing
under partial trace and non-increasing on average under stabilizer measurement. The “on average” allows
for magic to increase under post-selected measurement, i.e. “cheating”. Note that magic may of course
decrease under stabilizer protocols. For example, measuring in any stabilizer basis will decrease magic unless
the pre-measurement state already had the minimum amount. While it is not required by the definition, it
is convenient to haveM(ρ) = 0 for all ρ ∈ Pstab. If this is not the case, there is a trivially related monotone
M′(ρ) =M(ρ)−M(|0〉〈0|) for which it is.

Magic monotones may be used to examine magic resource theory both qualitatively and quantitatively.
They may be used to compare the efficiency of distillation protocols by comparing the ratiosM(ρout)/M(ρin)
for each protocol. They may also, particularly when regularized, be used to determine what states are useful
resource states. A regularized measure is defined [3] as follows:

M∞(ρ) := lim
n→∞

1

n
M(ρ⊗n). (50)

For additive monotones, the regularized measure is the same as the unregularized measure. For non-additive
monotones, however, it is this regularized version that is the relevant quantity for the discussion of distillation.
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Figure 4: In (a), output error probability εout is plotted against input error probability εin. When εout < εin,
the distillation works (the error probability decreases), and when εout > εin, the distillation fails (the error
probability increases). The white region on the left is the region of initial error probabilities for which the
distillation yields the state |A0〉 in the asymptotic limit. The white region on the right is the region that
yields |A1〉. The shaded region yields the fully mixed state. In (b), distillation subroutine success probability
ps is plotted against input error probability εin. For εin → 0, ps → 1, making distillation possible.
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A few magic monotones have already been defined. One natural way to go about defining these functions
is to look at distance measures on quantum state space. It is plausible to suppose that the minimum distance
of a state from the stabilizer polytope will give a measure of magic. This is the type of monotone that will be
introduced in the next section. It is also the class of monotones into which the relative entropy of magic [3]
falls. This monotone is defined simply as the minimum relative entropy distance of a quantum state to any
state in the stabilizer polytope, where the relative entropy distance between states ρ and σ is

S(ρ‖σ) := Tr [ρ log ρ]− Tr [ρ log σ] . (51)

Unfortunately, no analytic expression is known for this monotone or its regularized version, and numerical
evaluation quickly becomes intractible as the dimension of the Hilbert space increases.

Two more closely related magic monotones, also introduced in Ref. [3], are the sum negativity and the
mana. The sum negativity sn(ρ) of a state ρ is defined as the sum of the absolute values of the negative
elements of the Wigner function of ρ. The Wigner function is a quasiprobability representation of quantum
states (see Appendices D and C). The mana is defined as

M(ρ) := log(2sn(ρ) + 1), (52)

which gives it the nice property of being additive:

M(ρ⊗ σ) =M(ρ) +M(σ). (53)

While the mana is simple to compute and additive, it is unfortunately undefined for qubits because the Wigner
function, if positive, is a noncontextual hidden variable theory, and it is possible to violate contextuality
inequalities with qubit stabilizer states [1,3,19]. For more discussion of the relationship between contextuality
and quasiprobability negativity, see Appendix C.

Given the drawbacks of the existing magic monotones, a highly desirable contribution to the theory of
magic would be a computable magic monotone for qubits.

4.5 A Monotone Built from a Quantum State Distance

One way to define a magic monotone is in terms of the minimum distance from a state to the convex hull
of stabilizer states. There are of course many distances one can define on the space of quantum states. The
Bures distance DB provides a measure of how far apart two quantum states are in terms of their fidelity F :

DB(ρ, σ) =
√

2− 2F (ρ, σ) F (ρ, σ) = Tr

[√√
ρσ
√
ρ

]
(54)

The fidelity (Bures distance) is symmetric in ρ and σ, invariant under unitary operations, and non-decreasing
(non-increasing) under trace-preserving quantum operations. Note that when ρ = σ, F (ρ, σ) = 1 and
DB(ρ, σ) = 0. When ρ and σ have orthogonal support, they may be simultaneously diagonalized, and we see
that F (ρ, σ) = 0 and DB(ρ, σ) =

√
2. For any pair (ρ, σ), we have 0 ≤ F (ρ, σ) ≤ 1 and 0 ≤ DB(ρ, σ) ≤

√
2.

It will also come in handy to know that the fidelity has a nice multiplicative property:

F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F (ρ1, σ1)F (ρ2, σ2) (55)

We now define a magic monotone based on the Bures distance.

Theorem 15. The following expression defines a magic monotone.

Υ(ρ) = min
σ∈stab

DB(ρ, σ) (56)

where by stabA, we denote the convex hull of the stabilizer states of system A. When the subscript is omitted,
the reference is understood to be to the same space in which ρ lives.
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Proof. We prove each of the requirements for magic monotonicity in turn. We will make use of two useful
facts about these sets of states:

σ1 ∈ stabA, σ2 ∈ stabB −→ σ1 ⊗ σ2 ∈ stabAB (57)

Σ ∈ stabAB −→ trBΣ ∈ stabA (58)

1. Invariant under Clifford operations:

Υ(CρC†) = min
σ∈stab

DB(CρC†, σ) = min
σ∈stab

DB(CρC†, CC†σCC†) = min
σ′∈stab

DB(CρC†, Cσ′C†) (59)

= min
σ′∈stab

DB(ρ, σ′) = Υ(ρ) (60)

Here we’ve used the fact that the Clifford unitaries map stabilizers surjectively to stabilizers.

2. Non-increasing under partial trace:

Suppose the converse. Then for some ρ, Υ(TrBρ) > Υ(ρ). Substituting the definition of Υ, we have
minσ∈stabA DB(trBρ, σ) > minΣ∈stabAB DB(ρ,Σ). Then there is some Σ ∈ stabAB such that for all σ ∈ stabA,
DB(ρ,Σ) < DB(trBρ, σ). We know that trBΣ ∈ stabA, so DB(trBρ, trBΣ) > DB(ρ,Σ). But the Bures dis-
tance is non-increasing under partial trace, which is a trace-preserving quantum operation, so this is a
contradiction.

3. Non-increasing on average under stabilizer measurement:

We can implement any stabilizer measurement via computational basis measurement on the final qudit
if we first apply an appropriate Clifford operator, make the measurement, and then apply the inverse Clif-
ford operator. Define the set of projectors Vi = 1⊗|i〉〈i|, un-normalized post-measurement states ρi = ViρV

†
i

and σi = ViσV
†
i , and outcome probabilities pi = Tr [Viρ] and qi = Tr [Viσ]. The average post-measurement

value of Υ is:

Ῡ(ρpost) =
∑
i

piΥ

(
ρi
pi

)
=
∑
i

pi min
σ∈stab

DB

(
ρi
pi
, σ

)
1
=
∑
i

pi min
σ∈stab

DB

(
ρi
pi
,
σi
qi

)
(61)

≤ min
σ∈stab

∑
i

piDB

(
ρi
pi
,
σi
qi

)
2
≤ min
σ∈stab

DB(ρ, σ) = Υ(ρ) (62)

Here, equality (1) follows from the fact that a post-measurement state σj for j 6= i has orthogonal support
to the post-measurement state ρi, so maximizes the distance. Therefore, the distance must be minimized by
the post-measurement state σi. Inequality (2) is given in [4].

4. Invariant under tensoring-in of stabilizer states:

One direction we get for free from the partial trace behavior: Υ(ρ) = Υ(trB(ρ ⊗ σ̃)) ≤ Υ(ρ ⊗ σ̃). To
show the other direction:

Υ(ρ⊗ σ̃) = min
Σ∈stabAB

DB(ρ⊗ σ̃,Σ) = min
Σ∈stabAB

[2− 2F (ρ⊗ σ̃,Σ)]
1/2

(63)

≤ min
σ1∈stabA
σ2∈stabB

[2− 2F (ρ⊗ σ̃, σ1 ⊗ σ2)]
1/2

= min
σ1∈stabA
σ2∈stabB

[2− 2F (ρ, σ1)F (σ̃, σ2)]
1/2

(64)

1
= min
σ1∈stabA

[2− 2F (ρ, σ1)]
1/2

= min
σ1∈stabA

DB(ρ, σ1) = Υ(ρ) (65)

Here, equality (1) follows from the fact that we may choose σ2 to be a stabilizer state with orthogonal
support to σ̃, saturating the fidelity F (σ̃, σ2) and thereby performing the minimization over σ2.

Unfortunately, this monotone does not have many especially nice properties. In particular, it is not
additive or easily computable. Therfore, it will probably not be useful for practical purposes. However, the
proof that it is in fact a monotone has hopefully illustrated some of the techniques that may be used in the
treatment of magic theory.
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5 Conclusion

In this essay, we have reviewed stabilizer computation, a subtheory of quantum computation with an efficient
classical simulation algorithm. We have also presented new results about the geometric and combinatorial
nature of the stabilizer polytope. In addition, we discussed magic state distillation, a method for performing
fault-tolerant universal quantum computation via fault-tolerant stabilizer computation and the imperfect
preparation of resource states, and introduced a new magic monotone. In the future, it would be useful
to develop additive monotones for n-qubit states. It is hoped that further insight into the structure of the
stabilizer polytope, as might be afforded by a complete characterization of its faces, would allow the design
of a natural and simply computable monotone. Such a discovery would facilitate the examination of new
magic state distillation protocols, leading to potential fault-tolerant implementations of quantum computing,
and perhaps offer insight into the power of quantum computation.

A Distillation Protocol Calculations

The calculations in this appendix simply present explicitly the identities given in [2].

Lemma 16. For an arbitrary vector w ∈ {0, 1}15, the projection of the state |Aw〉 onto the code subspace
HZA(0, 0) is

Π|Aw〉 =


0 w /∈ L⊥1

|L2|−
1
2
∣∣AL0 〉 w ∈ L2

|L2|−
1
2
∣∣AL1 〉 w ∈ L2 ⊕ [1]

(66)

Proof. Because the groups A(L1) and Z(L2) are Abelian groups with all elements squaring to identity, the
projector onto the subspace HZA(0, 0) is simply the sum of the operators that stabilize the subspace divided
by the size number of such operators. Then the projection of an arbitrary state |A〉w onto this subspace is

Π|Aw〉 = (|L1| |L2|)−1
∑

(u,v)∈L1×L2

Z(v)A(u)|Aw〉 (67)

= (|L1| |L2|)−1
∑

(u,v)∈L1×L2

(−1)(u,w+v)|Aw+v〉 (68)

1
= (|L1| |L2|)−1

∑
(u,v)∈L1×L2

(−1)(u,w)|Aw+v〉 (69)

Equality (1) follows from the orthogonality of L1 and L2. Now consider the case w /∈ L⊥1 . Then for at least
one u ∈ L1, (u,w) ≡ 1 mod 2. Then this is true for exactly half of the elements of L1. Therefore the sum
over u ∈ L1 is zero, and we find that |Aw〉 is orthogonal to the subspace HZA. In the case w ∈ L⊥1 there are
two subcases: w ∈ L2 ⊕ [0/1]. Then the expression above simplifies further:

2
= (|L1| |L2|)−1

∑
(u,v)∈L1×L2

∣∣Av+[0/1]

〉
(70)

= |L2|−1
∑
v∈L2

∣∣Av+[0/1]

〉
(71)

= |L2|−
1
2

∣∣∣AL0/1〉 (72)

Equality (2) follows from the coset structure of L⊥1 .

The projection of the dephased input state ρin onto the code subspace HZA(0, 0) (the post-selected post-
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measurement state) is given by

ρs = ΠρinΠ (73)

=
∑

u∈{0,1}15
ε|u|(1− ε)15−|u|Π|Au〉〈Au|Π (74)

=
∑
u∈L2

ε|u|(1− ε)15−|u|Π|Au〉〈Au|Π +
∑

u∈L2+[1]

ε|u|(1− ε)15−|u|Π|Au〉〈Au|Π (75)

=
∑
u∈L2

ε|u|(1− ε)15−|u| |L2|−1 ∣∣AL0 〉〈AL0 ∣∣+
∑

u∈L2+[1]

ε|u|(1− ε)15−|u| |L2|−1 ∣∣AL1 〉〈AL1 ∣∣ (76)

= |L2|−1
∑
u∈L2

ε|u|(1− ε)15−|u|∣∣AL0 〉〈AL0 ∣∣+ |L2|−1
∑
u∈L2

ε15−|u|(1− ε)|u|
∣∣AL1 〉〈AL1 ∣∣ (77)

It is convenient to expand the basis states of the code subspace HZA(0, 0) in the computational basis:∣∣AL0 〉 = |L2|−
1
2

∑
v∈L2

|Av〉 (78)

= |L2|−
1
2

∑
v∈L2

Z(v)
∣∣A[0]

〉
(79)

= |L2|−
1
2

∑
v∈L2

Z(v)2−
15
2

(
|0〉+ e

iπ
4 |1〉

)⊗15

(80)

= 2−
15
2 |L2|−

1
2

∑
v∈L2

∑
u∈{0,1}15

e
iπ
4 |u|Z(v)|u〉 (81)

= 2−
15
2 |L2|−

1
2

∑
v∈L2

∑
u∈{0,1}15

e
iπ
4 |u|(−1)(u,v)|u〉 (82)

1
= 2−

15
2 |L2|−

1
2

∑
v∈L2

∑
u∈L⊥2

e
iπ
4 |u||u〉 (83)

= 2−
15
2 |L2|

1
2

∑
u∈(L2)⊥

e
iπ
4 |u||u〉 (84)

= 2−
15
2 |L2|

1
2

∑
u∈L1

e
iπ
4 |u||u〉+

∑
u∈L1+[1]

e
iπ
4 |u||u〉

 (85)

2
= 2−

5
2

∑
u∈L1

(
|u〉+ e−

iπ
4 |u+ [1]〉

)
(86)

Equality (1) follows from the fact, explained earlier, that for a fixed u /∈ L⊥2 , exactly half of the elements
v ∈ L2 have even zero product with u, so the sum over v vanishes. Equality (2) follows from the fact that
for all u ∈ L1, |u| ≡ 0 mod 8. Now we can compute the expectation values of the logical Pauli operators
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for the basis states:〈
AL0
∣∣XL

∣∣AL0 〉 = 2−5
∑

u,v∈L1

(
〈u|+ e

iπ
4 〈u+ [1]|

)
X⊗15

(
|v〉+ e−

iπ
4 |v + [1]〉

)
(87)

= 2−5
∑

u,v∈L1

[
〈u|v〉+ e−

iπ
4

〈
u|v + [1]

〉
+ e

iπ
4 〈u+ [1] |v〉+

〈
u+ 1|v + [1]

〉]
(88)

1
= 2−5

∑
u,v∈L1

[
e−

iπ
4

〈
u|v + [1]

〉
+ e

iπ
4 〈u+ [1] |v〉

]
(89)

= 2−5
∑

u,v∈L1

[(
e−

iπ
4 + e

iπ
4

)
〈u|v〉

]
(90)

=
2−4

√
2
|L1| (91)

=
1√
2

(92)〈
AL0
∣∣YL∣∣AL0 〉 = 2−5

∑
u,v∈L1

(
〈u|+ e

iπ
4 〈u+ [1]|

)
Y ⊗15

(
|v〉+ e−

iπ
4 |v + [1]〉

)
(93)

= 2−5
∑

u,v∈L1

[
e−

iπ
4 〈u|Y ⊗15|v + [1]〉+ e

iπ
4 〈u+ [1]|Y ⊗15|v〉

]
(94)

= 2−5
∑

u,v∈L1

[
e−

iπ
4 〈u|(−i)(−1)|v+[1]|

∣∣∣v + [1]
〉

+ e
iπ
4 〈u+ [1]|(−i)(−1)|v||v〉

]
(95)

= −i2−5
∑

u,v∈L1

[
e−

iπ
4 (−1)|v+[1]| 〈u|v〉+ e

iπ
4 (−1)|v| 〈u+ [1] |v〉

]
(96)

= −i2−5
∑
u∈L1

[
e−

iπ
4 (−1)|u+[1]| + e

iπ
4 (−1)|u|

]
(97)

= −i2−5
∑
u∈L1

[
−e− iπ4 + e

iπ
4

]
(98)

=
1√
2

(99)〈
AL0
∣∣ZL∣∣AL0 〉 = 2−5

∑
u,v∈L1

(
〈u|+ e

iπ
4 〈u+ [1]|

) (
−Z⊗15

) (
|v〉+ e−

iπ
4 |v + [1]〉

)
(100)

= 2−5
∑

u,v∈L1

[
−(−1)|v| 〈u|v〉 − (−1)|v+[1]| 〈u+ [1] |v + [1]〉

]
(101)

= 2−5
∑

u,v∈L1

[〈u+ [1] |v + [1]〉 − 〈u|v〉] (102)

= 0 (103)

Frequent use is made of the fact that u+ [1] = u. Equality (1) follows from the fact that [1] /∈ L1.

To demonstrate that
∣∣AL0 〉 is indeed the logical state corresponding to the single-qubit state |A0〉, we simply

need to show that the expectations of the single-qubit Pauli operators have the same expectations with |A0〉
as the logical Paulis do with

∣∣AL0 〉:
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〈A0|X|A0〉 =
1

2

(
〈0|+ e−

iπ
4 〈1|

)
X
(
|0〉+ e

iπ
4 |1〉

)
(104)

=
1

2

(
〈0|+ e−

iπ
4 〈1|

)(
|1〉+ e

iπ
4 |0〉

)
(105)

=
1

2

(
e
iπ
4 + e−

iπ
4

)
(106)

=
1√
2

(107)

〈A0|Y |A0〉 =
1

2

(
〈0|+ e−

iπ
4 〈1|

)
Y
(
|0〉+ e

iπ
4 |1〉

)
(108)

=
1

2

(
〈0|+ e−

iπ
4 〈1|

)(
i|1〉 − ie iπ4 |0〉

)
(109)

= − i
2

(
ei
π
4 − e−iπ4

)
(110)

=
1√
2

(111)

〈A0|Z|A0〉 =
1

2

(
〈0|+ e−

iπ
4 〈1|

)
Z
(
|0〉+ e

iπ
4 |1〉

)
(112)

=
1

2

(
〈0|+ e−

iπ
4 〈1|

)(
|0〉 − e iπ4 |1〉

)
(113)

= 0 (114)

Because in a two-dimensional subspace there is only one state orthogonal to any given state and because
unitary channels preserve orthogonality, this also tells us that |A1〉 is the logical state corresponding to the
single-qubit state |A1〉.

B Generalizing Stabilizer Protocols to Qudits

Although the discussion in the body of the essay has focused solely on systems of qubits, it is also possible to
consider systems of qudits, quantum systems with dimension dn for d an odd prime. Stabilizer computation,
defined analogously to the qubit case, is also efficiently simulable in the qudit case. The following discussion
follows that of [3]. We wish to generalize the qubit Pauli operators to operators acting on Hilbert spaces of
odd prime dimension. To this end, we define generators

X|j〉 = |j + 1〉 (115)

Z|j〉 = e
2πi
d j |j〉 (116)

Throughout this discussion, arithmetic is understood to be modulo d. These definitions hold as well for
d = 2. For odd prime dimension, we now define the single-qudit Heisenberg-Weyl operators

T(a,b) = e−
πi
d abZaXb (117)

where a, b = 1, . . . , d− 1. Note that these operators are not in general Hermitian.
Each qudit operator may be described by an ordered pair (ai, bi), so we may describe the operator on

the n-qudit space by the vector u = (~ua, ~ub) = (a1, a2, . . . , an, b1, b2, . . . , bn) ∈ Z2n
d and denote the operators

Tu. These operators obey some nice algebraic relations (demonstrated below):

TuTv = e
πi
d 〈u,v〉Tu+v (118)

[Tu, Tv] = 2i sin
[π
d
〈u, v〉

]
Tu+v (119)
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T †u = T−u (120)

TuTvT
†
u = e

2πi
d 〈u,v〉Tv (121)

where for u = (~ua, ~ub) and v = (~va, ~vb), 〈u, v〉 is the symplectic inner product

〈u, v〉 = (~ua, ~ub)

(
0 I
−I 0

)(
~vTa
~vTb

)
. (122)

Note that 〈u, u〉 = 0 for any vector u.
The Heisenberg-Weyl operators are mutually orthogonal with respect to the Hilbert-Schmidt operator:

Tr
[
T †uTv

]
= dnδu,v (123)

The operators are specified by 2n-dimensional vectors with integer entries between 0 and d− 1, so there are
d2n such operators. Operators on the Hilbert space of an n-qudit system are dn×dn matrices, so are spanned
by dn basis operators. Therefore, the Heisenberg-Weyl operators are an orthogonal basis for operators on
Hn−qudit. Then, we can write any operator in the form

ρ =
1

dn

∑
u

ruTu ru = Tr
[
T †uρ

]
(124)

If ρ is a density operator, we must have r0 = 1 to satisfy the trace one condition and r−u = r∗u to satisfy
Hermiticity. Now we have a nice way to represent arbitrary n-qudit states in vector form. Of course, this
representation is still exponentially large, as expected. However, as in the qubit case, we may represent
efficiently those states that are stabilized by Abelian subgroups of the Heisenberg-Weyl group with poly-
nomially large matrices with elements from the field Fd, and stabilizer operations on these states may be
simulated efficiently with protocols analogous to those given for the qubit case in the body of this essay.
Some technical details about the group are given below.

B.1 Algebraic Properties of the Heisenberg-Weyl Operators

We can express the operator T(a,b) explicitly as follows:

T(a,b) = e−
πi
d abZaXb = e−

πi
d ab

d−1∑
j=0

e
2πi
d j |j〉〈j|

a(
d−1∑
k=0

|k〉〈k −d 1|

)b
(125)

= e−
πi
d ab

d−1∑
j=0

e
2πi
d ja|j〉〈j|

(d−1∑
k=0

|k〉〈k −d b|

)
= e−

πi
d ab

d−1∑
j=0

e
2πi
d ja|j〉〈j −d b| (126)

= e−
πi
d ab

d−1∑
j=0

e
2πi
d (j+db)a|j +d b〉〈j| = e

πi
d ab

d−1∑
j=0

e
2πi
d ja|j +d b〉〈j| (127)

It will come in handy to know how to pull pure X and Z operators past each other:

XaZb =

d−1∑
j=0

|j +d a〉〈j|

(d−1∑
k=0

e
2πi
d kb|k〉〈k|

)
=

d−1∑
j=0

e
2πi
d jb|j +d a〉〈j| = e−

πi
d abT(b,a) = e−

2πi
d abZbXa (128)

Single-qudit operators compose in the following fashion:

T(a,b)T(c,d) = e−
πi
d abZaXbe−

πi
d cdZcXd = e−

πi
d (ab+cd)ZaXbZcXd (129)

= e−
πi
d (ab+cd)e−

2πi
d bcZaZcXbXd = e−

πi
d (ab+cd)e−

2πi
d bcZa+cXb+d (130)

= e−
πi
d (ab+cd)e

πi
d (a+c)(b+d)e−

2πi
d bcT(a+c,b+d) (131)

= e
πi
d (ad+bc)e−

2πi
d bcT(a+c,b+d) = e

πi
d (ad−bc)T(a+c,b+d) (132)
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To extend to the n-qudit case, define u = (a1, a2, . . . , an, b1, b2, . . . , bn) and v = (c1, c2, . . . , cn, d1, d2, . . . , dn)
Then the product of the n-qudit Heisenberg-Weyl operators specified by u and v is:

TuTv = T(a1,...,an,b1,...,bn)T(c1,...,cn,d1,...,dn) (133)

=
(
T(a1,b1) ⊗ . . .⊗ T(an,bn)

) (
T(c1,d1) ⊗ . . .⊗ T(cn,dn)

)
(134)

= T(a1,b1)T(c1,d1) ⊗ . . .⊗ T(an,bn)T(cn,dn) (135)

= e
πi
d (a1d1−b1c1)T(a1+c1,b1+d1) ⊗ . . .⊗ e

πi
d (andn−bncn)T(an+cn,bn+dn) (136)

= e
∑
i
πi
d (aidi−bici)T(a1+c1,...,an+cn,b1+d1,...bn+dn) (137)

= e
πi
d 〈u,v〉Tu+v (138)

Then the commutation relations are given by:

[Tu, Tv] = TuTv − TvTu = e
πi
d 〈u,v〉Tu+v − e

πi
d 〈v,u〉Tv+u (139)

=
(
e
πi
d 〈u,v〉 − e−πid 〈u,v〉

)
Tu+v = 2i sin

[π
d
〈u, v〉

]
Tu+v (140)

The adjoint of a single-qudit Heisenberg-Weyl operator is given by:

T †(a,b) = e
πi
d abXb†Za† = e

πi
d abX−bZ−a = e

πi
d abe−

2πi
d (−a)(−b)Z−aX−b (141)

= e−
πi
d (−a)(−b)Z−aX−b = T(−a,−b) (142)

The adjoint of a tensor product is simply the tensor product of adjoints, so this gives in the n-qudit case

T †u = T−u (143)

Then the operators obey the conjugation relation:

TuTvT
†
u = TuTvT−u = e

πi
d 〈u,v〉Tu+vT−u = e

πi
d 〈u,v〉e

πi
d 〈u+v,−u〉Tv (144)

= e
πi
d 〈u,v〉e

πi
d (〈u,u〉+〈u,v〉)Tv = e

2πi
d 〈u,v〉Tv (145)

B.2 Representing Operators with Heisenberg-Weyl Operators

The Heisenberg-Weyl Operators are mutually orthogonal with respect to the Hilbert-Schmidt inner product:

Tr
[
T †uTv

]
= Tr [T−uTv] = Tr

[
e
πi
d 〈−u,v〉T−u+v

]
= e

πi
d 〈v,u〉Tr [Tv−u] (146)

= e
πi
d 〈v,u〉Tr

[
T(c1,...,cnd1,...,dn)−(a1,...,anb1,...,bn)

]
(147)

= e
πi
d 〈v,u〉Tr

[
T(c1−a1,d1−b1) ⊗ . . .⊗ T(cn−an,dn−bn)

]
(148)

= e
πi
d 〈v,u〉

n∏
j=1

Tr
[
T(cj−aj ,dj−bj)

]
= e

πi
d 〈v,u〉

n∏
j=1

dδcj ,ajδdj ,bj (149)

= e
πi
d 〈v,u〉dnδu,v = dnδu,v (150)

Then we can write an operator in the form

ρ =
1

dn

∑
u

ruTu (151)

This gives us a simple way to find the decomposition of an operator on Hdn in terms of the Heisenberg-Weyl
operators:

Tr
[
T †uρ

]
= Tr

[
T †u

1

dn

∑
v

rvTv

]
=

1

dn

∑
v

rvTr
[
T †uTv

]
=

1

dn

∑
v

rvd
nδu,v = ru (152)
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To determine the constraints on the values of ru for a density matrix, we begin by calculating the square of
the operator.

ρ2 =
1

d2n

∑
u,v

rurvTuTv =
1

d2n

∑
u,v

rurve
πi
d 〈u,v〉Tu+v =

1

d2n

∑
s,u

rurs−ue
πi
d 〈u,s−u〉Ts (153)

=
1

d2n

∑
s,u

rurs−ue
πi
d 〈u,s〉Ts (154)

Then the trace is

Tr
[
ρ2
]

=
1

d2n

∑
u

rur−ud
n =

1

dn

∑
u

rur
∗
u (155)

A valid density operator has Tr
[
ρ2
]
≤ Tr [ρ] = 1, with equality for pure states. Then we must have

1

dn
(
1 + ~r†~r

)
≤ 1 (156)

where we’ve used the fact that r0 = 1 and grouped the remaining d2n−1 coefficients into the vector ~r. In the
single-qubit case, ~r is simply the Bloch vector, and any ~r satisfying the above condition is valid. In higher
dimensions, there are further constraints on ~r imposed by positivity.

C Noncontextual Ontological Model = Positive Quasiprobability
Representation

Spekkens has noted in [12] that negativity of all quasiprobability representations of a quantum (sub)theory
reflects the same departure from classicality as noncontextuality violation. In order to do so, he generalizes
the notion of contextuality to include preparation and reject the insistence on deterministic sharp (projec-
tive) measurements. In [10], it is demonstrated that these are well-justified alterations of the concept of
contextuality. A particular example is that of Bell inequality violation with EPR pairs. These states admit
positive Wigner representations, but the necessary measurements have Wigner representations outside of
[0, 1], so cannot be interpreted as probabilities. The following definitions and argument are due to Spekkens.

Definition 9. A quasiprobability representation of quantum theory consists of the following components:

• A measurable space Λ with elements λ

• A function µρ : Λ→ R associated to each density operator ρ such that
∫
dλµρ(λ) = 1

• A set of functions ξEk : Λ→ R associated to each POVM {Ek} such that
∑
k ξEk(λ) = 1

• The constraint Tr [ρEk] =
∫
dλµρ(λ)ξEk(λ)

A nonnegative quasiprobability representation is one in which µρ(λ) ≥ 0 and ξE(λ) ≥ 0 for all λ ∈ Λ, all
density operators ρ, and all positive operators E less than identity (in the sense of the partial order A ≤ B
if and only if B −A is positive). Such operators are potential POVM elements.

An operational theory has as its primitive elements preparations, transformations, and measurements
and aims to determine the probabilities p(k|P, T,M) of outcome k given preparation P , transformation T ,
and measurement M . Equivalence classes of preparations are defined so that

P ∼ P ′ ←→ p(k|P, T,M) = p(k|P ′, T,M)∀T,M (157)

An ontological model of an operational theory is an explanation of the predictions of the theory in terms of
physical systems. For convenience, we will consider only the preparation and measurement components of
the theory, but transformations may be considered similarly as examined in detail in [10]. It is also possible
to cast transformations in the language of quasiprobability representations [8, 19].
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Definition 10. An ontological model of quantum theory consists of the following components:

• A measurable space λ with elements λ

• A function µP : Λ→ R associated to each preparation P such that
∫
dλµP (λ) = 1 and µP (λ) ≥ 0

• A function ξM,k : Λ→ R associated to each measurement M such that
∑
k ξM,k(λ) = 1 and ξM,k(λ) ≥ 0

• The constraint Tr [ρEk] =
∫
dλµP (λ)ξM,k(λ) for all P in the equivalence class Pρ and all M in the

equivalence class M{Ek}.
A noncontextual ontological model is one for which µP (λ) = µρ(λ) for all P ∈ Pρ and ξM,k(λ) = ξEk(λ)

for all M ∈M{Ek}. From these definitions, it is clear that a nonnegative quasiprobability representation of
quantum theory is a noncontextual ontological model. Therefore, we may conclude that a theory admits a
noncontextual ontological model if and only if it admits a nonnegative quasiprobability representation.

The relationship between contextuality and universal quantum computation, glimsped through the lens
of the mana, suggests that contextuality may be related to the posited quantum speedup [1,7–9,19]. This is
a fascinating area for future study.

D The Discrete Wigner Function

We may define a set of single-qudit Hermitian operators, the phase space point operators, as follows:

A0 =
1

d

d−1∑
a,b=0

T(a,b) (158)

A(a,b) = T(a,b)A0T
†
(a,b) (159)

For n qudits, a and b become vectors in Znd , and we define

T(a⊕c,b⊕d) = T(a,b) ⊗ T(c,d) (160)

From this it follows that

A(a⊕c,b⊕d) = A(a,b) ⊗ T(c,d) (161)

We may now define the discrete Wigner function:

Wρ(a, b) =
1

dn
Tr
[
A(a,b)ρ

]
; a, b ∈ Znd (162)

Because the phase space point operators A(a,b) are Hermitian, the Wigner function is real-valued. If
Wρ(a, b) ≥ 0 for all a, b, the state ρ is said to have positive representation. Otherwise, it is said to have
negative representation.

Lemma 17. The discrete Wigner function is a quasiprobability representation for quantum states.

Proof. The first requirement of a quasiprobability representation of a quantum theory is that it be defined
on a measurable space Λ. In this case, Λ = {(a, b)|a, b ∈ Znd}. We require a function µρ : Λ → R to be
associated to each density matrix ρ such that

∫
dλµρ(λ) = 1. This is provided by Wρ. We have already

established that this function is real-valued. Because Λ is discreet, the integral is replaced by a sum, and we
have: ∑

u

Wρ(u) =
∑
u

1

dn
Tr(Auρ) =

1

dn
Tr

(∑
u

TuA0T
†
uρ

)
=

1

d2n
Tr

[(∑
u,v

TuTvT
†
u

)
ρ

]
(163)

=
1

d2n
Tr

[∑
v

(∑
u

e
2πi
d (u×v)Tv

)
ρ

]
= Tr [T0ρ] = Tr(ρ) = 1 (164)

where we’ve used: ∑
u

e
2πi
d (u×v) =

{
d2n v = 0
0 v 6= 0
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Figure 5: In (a), output error probability εout is plotted against average input error probability ε̄in. The error
distribution used is a gaussian with mean ε̄in and standard deviation ε̄in/5, truncated at 0 and 1. In (b),
distillation subroutine success probability ps is plotted against average input error probability ε̄in. Of course,
there is no guarantee that the form of the error distribution is invariant under the distillation protocol, but
these results at least suggest that distillation is still possible even with some limited inhomogeneity in the
error probabilities of the resource states ρ(0).
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