
Note 4

This document derives four conserved quantities of the electromagnetic field in vacuum, the energy, mo-
mentum, angular momentum, and a fourth related to boosts. The procedure followed is to reformulate
Maxwell’s equations in terms of a variational principle (specified by the Maxwell Lagrangian) and to derive
the Noether charges corresponding to spacetime translations and Lorentz transformations.

The electromagnetic field in three dimensional space and in the absence of matter is governed by the vacuum
Maxwell’s equations. In Heaviside-Lorentz units and setting the speed of light c = 1, these are

∇ ·E = 0 (1)

∇ ·B = 0 (2)

∇×E +
∂B

∂t
= 0 (3)

∇×B− ∂E

∂t
= 0. (4)

This document will demonstrate that the following are conserved quantities for solutions of the Maxwell
equations:

H =

∫ (
E2 + B2

)
d3x (5)

P =

∫
E×B d3x (6)

L =

∫
x× (E×B) d3x (7)

Q =

∫ (
1

2

(
E2 + B2

)
x− t (E×B)

)
d3x. (8)

Potential formulation

Any divergence-free vector field may be written as the curl of another vector field, and any curl-free vector
field may be written as the gradient of a scalar field, so if E and B solve Maxwell’s equations, we may find
some vector field A and some scalar field V such that

B = ∇×A. (9)

E = −∇V − ∂A

∂t
. (10)

If we take A and V to be the basic dynamical variables of the theory, with electric and magnetic fields
defined in terms of these as above, then the second and third Maxwell equations are automatically satisfied,
and the first and fourth take the form

0 = ∇ ·
(
−∂A

∂t
−∇V

)
= − ∂

∂t
∇ ·A−∆V = �V − ∂

∂t

(
∂V

∂t
+ ∇ ·A

)
(11)

0 = ∇× (∇×A)− ∂

∂t

(
−∂A

∂t
−∇V

)
= �A + ∇

(
∂V

∂t
+ ∇ ·A

)
(12)

where � = ∂2t −∆ is the d’Alembertian operator. If we define the 4-vector potential Aµ = (V,A) and the
differential operator ∂µ = (∂t,∇), with indices raised and lowered by the metric η = diag(+1,−1,−, 1,−1),
we find that these two equations take the compact form

∂µ (∂µAν − ∂νAµ) = 0. (13)

Thus given any 4-vector field Aµ that satisfies the equation of motion (13), the electric and magnetic fields
derived from it via (9) and (10) will satisfy Maxwell’s equations. Moreover, any solution of Maxwell’s
equations corresponds to such an Aµ. (In fact, a solution of Maxwell’s equations corresponds to a family of
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4-potentials Aµ. This so-called gauge-invariance turns out to be very important, but won’t be used in this
derivation.) It will be useful to define the field-strength tensor

Fµν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0.

 (14)

Note that it must be shown or postulated separately of any of the analysis performed so far that the electric
and magnetic fields actually transform as a rank-2 tensor under Lorentz transformations (although it is
indeed the case that they do).

Variational formulation

Consider a physical system described, within some spatial region R and time interval t1 ≤ t ≤ t2, by a
4-vector field Aµ that vanishes at the spatial boundary ∂R. One way to pick out the physically possible
trajectories of the system is to declare that they are those trajectories that are stationary points of some
functional with respect to variations that vanish at both spatial and temporal boundaries. We take this
functional to be the action

S =

∫ t2

t1

dt

∫
R
d3xL (15)

defined in terms of the Lagrangian

L = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) . (16)

The variation of the action is

δS =

∫ t2

t1

dt

∫
R
d3x δL =

∫ t2

t1

dt

∫
R
d3x

∂L
∂(∂τAω)

δ(∂τAω) = 2

∫ t2

t1

dt

∫
R
d3x (∂τAω − ∂ωAτ ) ∂τ (δAω) (17)

= −2

∫ t2

t1

dt

∫
R
d3x [∂τ (∂τAω − ∂ωAτ )] δAω (18)

so that the stationarity condition is equivalent to the equation of motion

∂µ (∂µAν − ∂νAµ) = 0. (19)

Noether’s Theorem

We can examine the properties of stationary trajectories Aµ, and we will find that the following conservation
laws hold:

0 = ∂µJ µν = ∂µMµλτ (20)

where the conjugate momentum Πµν , stress tensor J µν , and angular momentumMµλτ are defined as follows:

Πµν = −(∂µAν − ∂νAµ) (21)

J µν = Πµλ∂νAλ − ηµνL (22)

Mµλτ = xτJ µλ − xλJ µτ + ΠµλAτ −ΠµτAλ. (23)

The vanishing of the 4-divergences provides conservation laws as follows. We may consider the µ = 0
component integrated over space, and we find

d

dt

∫
J 0ν dx =

∫
∂0J 0ν dx = −

∫
∂iJ iν dx = 0, (24)
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where i = 1, 2, 3 ranges over the spatial coordinates and we have used the assumption that the fields vanish
at infinity. Then we have the conserved quantities

Qν =

∫
J 0ν dx. (25)

Similar reasoning may be applied to the angular momentum Mµλτ to obtain conserved quantities Qλτ .

Stress tensor from translational invariance We’ll work first towards finding the stress tensor by exploit-
ing the invariance of the Lagrangian under translations, i.e. its lack of explicit dependence on xµ. Imagine
that an observer has a notebook in which they have written down the value of the Lagrangian at each point
in spacetime. Denote by L this function of xµ. Now suppose the same observer shifts the origin of their
coordinate system by an infinitessimal shift εµ, so that a point that was assigned the coordinates xµ in the
old system is now assigned the coordinates xµ− εµ. In this new coordinate system, the observer records the
values of the Lagrangian for all values of the (new) coordinate. Refer to this function of xµ as Lneq. We can
now use two methods to evaluate

δL = Lnew − L. (26)

First, we can just view the Lagrangian as a scalar field in its own right, so that

Lnew(xµ) = L(xµ − εµ) = −εµ∂µL. (27)

On the other hand, we L depends on the derivatives ∂µA
ν , so that

δL =
∂L

∂(∂µAν)
δ(∂µAν) = Πµνδ(∂µAν) = ∂µ (ΠµνδAν) = −∂µ

(
Πµνελ∂λAν

)
, (28)

where we have used the definition of the conjugate momentum, the fact that δ(∂µAν) = ∂µ(δAν), and the
previously-established divergenceless of the conjugate momentum, i.e. the equation of motion (13). Equating
these two expressions we find

0 = ∂µ
(
Πµνελ∂λAν

)
− εµ∂µL = ελ∂µ

(
Πµν∂λAν − ηµλL

)
, (29)

which must hold for any ελ, establishing

∂µ
(
Πµν∂λAν − ηµλL

)
= 0 (30)

as claimed.

Angular momentum tensor from Lorentz invariance In order to obtain the angular momentum tensor,
we imagine instead that the observer undergoes a Lorentz transformation. Now we have

Lnew(xµ) = L(xµ − εµνxν) = L(xµ)− ελνxν∂λL(xµ) (31)

so that we have

δL = Lnew(xµ)− L(xµ) = −ελ ν xν ∂λL(x) = −∂λ (ελνx
νL) (32)

As before, we also have

δL = ∂µ

(
∂L

∂ (∂µAν)
δAν

)
= ∂µ (ΠµνδAν) . (33)

This time we have

Aν new(xλ) = (δτν − ετν)Aτ
(
xλ − ελσxσ

)
= (δτν − ετν)

(
Aτ (x)− ελσxσ∂λAτ (x)

)
= Aν − ελσxσ∂λAν − ετνAτ

(34)
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so that

δAν = −ελσxσ∂λAν − ετνAτ = −ετλxτ∂λAν − ετλδλνAτ = −ελτ (xτ∂λAν + ηλνAτ ) (35)

Plugging this in to the variation of the Lagrangian:

δL = ∂µ (ΠµνδAν) = −∂µ
(
Πµνελτ (xτ∂λAν + ηλνAτ )

)
(36)

= −ελτ∂µ
(
Πµν

(
xτ∂λAν + δλνA

τ
))

= −ελτ∂µ
(
xτJ µλ + ηµλxτL+ ΠµνδλνA

τ
)

(37)

equating the two expressions:

0 = −ελτ∂µ
(
xτJ µλ + ηµλxτL+ ΠµνδλνA

τ
)

+ ∂λ (ελνx
νL) = −ελτ∂µ

(
xτJ µλ + ΠµνδλνA

τ
)
. (38)

As ελτ is an arbitrary antisymmetric tensor, we have

0 = ∂µ
(
xτJ µλ − xλJ µτ + ΠµλAτ −ΠµτAλ

)
(39)

as claimed.

Translating back to E and B

Now we may convert back into the language of electric and magnetic fields from the language of the 4-
potential. The Lagrangian density for electromagnetism is

L = −1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) = −1

4
FµνF

µν =
1

2

(
E2 −B2

)
(40)

so that the conjugate momentum density is

Πµν =
∂L

∂(∂µAν)
= −(∂µAν − ∂νAµ) = −Fµν . (41)

The energy-momentum tensor is

J µν = Πµ
λ∂

νAλ − gµνL = −gµα(∂αAλ − ∂λAα)∂νAλ − gµνL = −gµαFαλ∂νAλ − gµνL (42)

so that we have for the time-time component

J 00 = −g0αFαλ∂0Aλ − L = −F0λ∂
0Aλ − 1

2

(
E2 −B2

)
= −E · Ȧ− 1

2

(
E2 −B2

)
(43)

= −E · (−E−∇V )− 1

2

(
E2 −B2

)
=

1

2

(
E2 + B2

)
+ E ·∇V (44)

=
1

2

(
E2 + B2

)
+ ∇ · (VE) (45)

where we’ve used the divergenceless nature of the electric field. The time-space component becomes

J 0i = −g0αFαλ∂iAλ = −F0λ∂
iAλ = −E · ∂iA = −Ej∂iAj = (E×B)i + ∇ · (AiE) (46)

where the last equality uses the identity for the product of two Levi-Civita symbols and the divergenceless
nature of the electric field.

The angular momentum tensor is

Mµλτ = xτJ µλ − xλJ µτ + ΠµλAτ −ΠµτAλ (47)
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so that the time-space-space component is

M0ij = xjJ 0i − xiJ 0j + Π0iAj −Π0jAi (48)

= xjJ 0i − xiJ 0j − F 0iAj + F 0jAi (49)

= xjJ 0i − xiJ 0j + EiAj − EjAi (50)

= xj
(
εiklE

kBl +∇ · (AiE)
)
− xiJ 0j + EiAj − EjAi (51)

= εiklx
jEkBl +∇ · (AiE)xj − xiJ 0j + EiAj − EjAi (52)

= εiklx
jEkBl + ∂k(AiEkx

j)−AiEj − xiJ 0j + EiAj − EjAi (53)

= εiklx
jEkBl + ∂k(AiEkx

j)− εjklxiEkBl − ∂k(AjEkx
i) (54)

= xj(E×B)i − xi(E×B)j + ∇ ·
(
E
(
Aix

j −Ajxi
))

(55)

The time-time-space component becomes

M00i = xiJ 00 − x0J 0i + Π00Ai −Π0iA0 (56)

= xi
(

1

2

(
E2 + B2

)
+ ∇ · (VE)

)
− x0 ((E×B)i + ∇ · (AiE)) + Π00Ai −Π0iA0 (57)

= xi
(

1

2

(
E2 + B2

)
+ ∇ · (VE)

)
− x0 ((E×B)i + ∇ · (AiE)) + EiA0 (58)

=
1

2

(
E2 + B2

)
xi − t (E×B)i + xi∇ · (VE)− t∇ · (AiE) + EiA0 (59)

=
1

2

(
E2 + B2

)
xi − t (E×B)i + ∂j

(
V xiEj

)
− V Ei − t∇ · (AiE) + EiA0 (60)

=
1

2

(
E2 + B2

)
xi − t (E×B)i + ∂j

(
V xiEj

)
− ∂j(tAiEj) (61)

=
1

2

(
E2 + B2

)
xi − t (E×B)i + ∇ ·

(
E
(
V xi − tAi

))
. (62)

These quantities may now be integrated, discarding the total divergence terms, to obtain the conserved
quantities claimed at the beginning of the document.


