Jeffrey M Epstein

☑ jeffrey.m.epstein@gmail.com ♀ San Francisco, CA jeffreymepstein.github.io

Experience	
Atom Computing, Senior Quantum Applications Engineer	Berkeley, CA
- Developed circuit-level tools for efficient and informative characterization of single and two-qubit gates. Resulting Python software package used internally by hardware engi- neers to perform rigorous analyses of gate performance. Information provided by this tool can be used to inform hardware improvement and circuit simulations.	Aug. 2021 to present
 Led characterization/benchmarking component of DARPA US2QC program. Developed broad knowledge of state-of-the-art techniques in the analysis and error modeling of near-term quantum processors, which I presented to the testing and evaluation team composed of experts from government labs. 	
 Developed and studied novel state preparation algorithm for constrained optimization, leading to a publication and a patent (pending). 	
 Built tools based on Q-CTRL for optimization of pulse sequences on atomic platform, facilitating design of rapid gates robust against various sources of noise. 	
- Supervised company's first theory intern, leading to her authorship on a scientific pub- lication.	
National Institute of Standards and Technology, Postdoctoral Scholar	Gaithersburg, MD
- Research on quantum information and thermodynamics, leading to publication.	Feb. 2021 to June 2021
- NIST NRC Postdoctoral Research Associateship, 2021	
University of California, Berkeley, Graduate Student Researcher	Berkeley, CA
- Research and publication on several problems in quantum information theory and non-equilibrium statistical mechanics.	June. 2015 to Dec. 2020
- National Defense Science and Engineering Graduate (NDSEG) Fellowship, 2016 - 2021	
University of California, Berkeley, Graduate Student Instructor	Berkeley, CA
 Physics 112 (intro. to statistical and thermal physics), Physics 7b (intro. thermodynam- ics and electromagnetism for scientists and engineers). Taught sections, held regular office hours, and graded problem sets and exams. 	Sep. 2014 to May 2015
IBM Research, TJ Watson Research Center, Quantum Computing Intern	Yorktown Heights, NY
- Studied robustness of randomized benchmarking (RB) under varying noise models, leading to a highly-cited publication used in the field as evidence for the validity of RB for benchmarking quantum processors subject to realistic physical noise.	Sep. 2012 to June 2013
Education	
University of California, Berkeley, PhD in physics	Berkeley, CA
- Dissertation: Statistical Mechanics of Transport Processes in Active Matter	Sep. 2014 to Dec. 2020
Perimeter Institute for Theoretical Physics, MSc in Theoretical Physics	Waterloo, ON
- Perimeter Scholars International program	Sep. 2013 to June 2014
Harvard College, AB in Chemistry and Physics	Cambridge, MA
- magna cum laude with high honors in field	Sep. 2008 to May 2012
- secondary field, Mathematics; language citation, Chinese	

Publications

- 1. Note on simple and consistent gateset characterization including calibration and decoherence errors. **JME**. arXiv:2402.17727 (2024)
- 2. Subspace Correction for Constraints. K Pawlak, **JME**, D Crow, S Gandhari, M Li, T Bohdanowicz, J King. arXiv:2310.20191 (2024)
- 3. Iterative assembly of 171Yb atom arrays in cavity-enhanced optical lattices. M Norcia et al. arXiv:2401.16177 (2024)
- 4. *Mid-circuit qubit measurement and rearrangement in a* 171Yb *atomic array*. M Norcia *et al.* arXiv:2305.19119 (2023)
- 5. *Thermally driven quantum refrigerator autonomously resets superconducting qubit*. M Aamir, P Suria, J Guzmán, C Castillo-Moreno, **JME**, N Yunger Halpern, S Gasparinetti. arXiv:2305.16710 (2023)
- 6. Odd Diffusivity of Chiral Random Motion. C Hargus, JME, KK Mandadapu. Phys. Rev. Lett. 127, 178001 (2021).
- 7. *Quantum noise limits for a class of nonlinear amplifiers*. **JME**, KB Whaley, J Combes. Phys. Rev. A 103 (5), 052415 (2021).
- 8. *Time reversal symmetry breaking and odd viscosity in active fluids: Green-Kubo and NEMD results*. C Hargus, K Klymko, **JME**, KK Mandadapu. J. Chem. Phys. 152, 201102 (2020).
- 9. *Time reversal symmetry breaking in two-dimensional non-equilibrium viscous fluids*. **JME**, KK Mandadapu. Phys. Rev. E 101, 052614 (2020).
- 10. Continuous quantum error correction for evolution under time-dependent Hamiltonians. J Atalaya, S Zhang, MY Niu, A Babakhani, HCH Chan, **JME**, KB Whaley. arXiv:2003.11248 (2020).
- 11. Statistical Mechanics of Transport Processes in Active Fluids II: Equations of Hydrodynamics for Active Brownian Particles. **JME**, K Klymko, KK Mandadapu. J. Chem. Phys. 150, 164111 (2019).
- 12. Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices. NM Tubman, C Mejuto-Zaera, **JME**, D Hait, DS Levine, W Huggins, Z Jiang, JR McClean, R Babbush, M Head-Gordon, KB Whaley. arXiv:1809.05523 (2018).
- 13. Quantum Speed Limits for Quantum Information Processing Tasks. JME, KB Whaley. Phys. Rev. A 95, 042314 (2017).
- 14. *Investigating the Limits of Randomized Benchmarking Protocols*. **JME**, AW Cross, E Magesan, and JM Gambetta. Phys. Rev. A 89, 062321 (2014)
- 15. *CD36 in the periphery and brain synergize in stroke injury in hyperlipidemia*. E Kim, M Febbraio, Y Bao, AT Tolhurst, **JME**, S Cho. Annals of Neurology. 71(6) (2012)